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The first part of this dissertation combines continuum limits of nonlocally interact-

ing particles with stability analysis of nonlinear PDE to analyze the steady states

of systems of pairwise-interacting particles. Models employing these assumptions

cover a cornucopia of physical systems, from insect swarms and bacterial colonies

to nanoparticle self-assembly. In this joint work with Theodore Kolokolnikov and

Andrea Bertozzi [60], we study a continuum model with densities supported on

co-dimension one curves for two-species particle interaction in R2, and apply linear

stability analysis of concentric ring steady states to characterize the steady state

patterns and instabilities which form. Conditions for linear well-posedness are

determined and these results are compared to simulations of the discrete particle

dynamics, showing predictive power of the linear theory.

Part II continues the work started in [76], which proposes the sparse Fourier

domain approximation of solutions to multiscale PDE problems by soft thresh-

olding. In this joint work with Hayden Schaeffer and Stanley Osher [61], we show

that the method enjoys a number of desirable numerical and analytic properties,
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including convergence for linear PDE and a modified equation resulting from the

sparse approximation. We also extend the method to solve elliptic equations and

introduce sparse approximation of differential operators in the Fourier domain.

The effectiveness of the method is demonstrated on homogenization examples,

where its complexity is dependent only on the sparsity of the problem and con-

stant in many cases.
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CHAPTER 1

Steady-States in Two-Species Particle Aggregation

1.1 Preface

This chapter is concerned with stability analysis of configurations formed by a

large number of two species of pairwise-interacting particles in R2 [60]. The crux

of our stability analysis comes down to the aggregation equation

ut + div(uv) = 0,

v = −∇K ∗ u,

which is used to approximate the damped collective particle motion by the dy-

namics of a continuum mass u(x) subject to the potential K.

To illustrate the mathematical tools used, we first introduce PDE limits for dis-

crete systems, discuss the aggregation equation, give an example of the technique

in action, and then proceed to the specifics of our project in section 1.2.

1.1.1 PDE Limits

A main step of this chapter is the use of a nonlocal PDE to describe aggregate

particle interactions as the number of particles goes to infinity. Analysis of the

system of particles is then shifted from high-dimensional coupled ODEs to a PDE.

For our purposes, this continuum limit is partially an ansatz because we consider

potentials for which the particles remain contained in a bounded set regardless

of their number. Therefore, we assume from the start that the problem may

1



be formulated in terms of measures; for the case of finitely many particles, the

corresponding measure is a sum of dirac masses. Once the correct PDE limit has

been identified, it is often easiest to think of the case of finitely many particles

as a special case of the equations for a general measure, i.e. the continuum limit.

For more details, see sections 1.1.3 and 1.4.

Continuum and hydrodynamic limits appear in other contexts such as random

interacting particle systems, statistical mechanics, and kinetic theory. In most

of these areas, identification of the correct limit involves more complex scaling

techniques and tools from probability theory. Discussion of these well-established

topics is outside the scope of this dissertation, but interested readers may consult

[13, 48, 74] and other references.

1.1.2 The Aggregation Equation

The continuum limit of the single-species version of the problem discussed in this

chapter is given by the aggregation equation [53] in R2:

ut + div(uv) = 0,

v = −∇K ∗ u,

which models a scalar quantity u(x, t), typically referred to as “mass”, advected by

a velocity field v(x, t). The velocity field arises as the gradient of a potential K,

typically playing the role of some kind of gravitation, convolved with u. Thus, the

aggregation equation is commonly used to model the overdamped dynamics of a

quantity with nonlocal attraction/repulsion specified by K. It appears in models

of bacterial colonies, swarms, robotic control, and physical chemistry. For more

applications and models, see section 1.2.

Due to the advective nature of the aggregation equation, its analysis (see

[7, 53, 5] and many others) has much in common with that of the fluid Euler

equation [62]. In the sense of the Helmholtz Decomposition for vector fields, the

2



Euler and aggregation equations are orthogonal: in the Euler equation the velocity

field is divergence-free, while in the aggregation equation it is the gradient of a

potential.

To illustrate this point, consider the aggregation equation with the Newtonian

potential:

ut + div(uv) = 0,

v = ∇∆−1u = ∇N ∗ u,

i.e. v = ∇φ where ∆φ = ω. The Poisson equation for φ is solved by convolution

with the Newtonian potential N(x) = 1
2π

log |x|. For more about aggregation in

this context, see [6].

Now recall that the vorticity form of the two-dimensional Euler equation is

[62]

ωt + div(ωv) = 0

v = ∇⊥∆−1ω = ∇⊥N ∗ ω,

i.e. v = ∇⊥ψ where ∆ψ = ω. Up to the perpendicular gradient, the two equations

are identical. For the vorticity equation, the convolution defining the velocity is

known as the Biot-Savart law [62]:

v(x, t) =

∫
Rd
K2(x− y)ω(y, t) dy

where

K2 = ∇⊥N =
1

2π

(
− x2

|x|2
,
x1

|x|2

)T
.

For the two-species problem discussed in this chapter, the continuum limit is

a generalization of the aggregation equation to two quantities with different inter-

actions. Detailed knowledge of the usual, single-quantity aggregation equation is

not a prerequisite for our analysis here, but many of the steps in section 1.4 will

be familiar to readers with a background in aggregation or other advective PDE.

Sections 1.4-1.6 closely follow [87].

3



1.1.3 An Example

To introduce the continuum limit technique in our context, we consider the limit

of a problem with a single type of particle. Assume the particles occupy positions

x1 . . .xN ∈ Rd, and that every pair of particles (i, j) in the absence of others will

move to minimize the potential energy

P (|xi − xj|)

where P (x) is a function with a unique minimum for x > 0. With all particles

present, they jointly move to minimize the total potential energy

E(x1, . . . ,xN)
∑

1≤i<j≤N

P (|xi − xj|). (1.1)

To approach the problem, we consider the continuum limit of (1.1):

Ec(u) =
1

2

∫
x

∫
y

P (|x− y|)u(x)u(y) dxdy. (1.2)

In the above energy, u(x) represents a continuum mass in space. If u(x) =∑N
i=1 δxi(x), it is easily verified that (1.2) reduces to (1.1) with the assumption

that particles do not interact with themselves.

If we assume further that u(x, t) evolves the a gradient flow of the energy (1.2),

we arrive at the aggregation equation

ut + div(uv) = 0,

v = −∇P ∗ u,

introduced above. See [4] for details.

Alternatively, we can reach the continuum limit from the discrete energy E

directly. This is the approach taken in sections 1.3 and 1.4 below.

4



1.2 Introduction

The collective behavior of systems of interacting particles gives rise to emer-

gent phenomena in physics, biology, chemistry, and other disciplines. Models

of pairwise-interacting agents find applications in the biological contexts of locust

swarms [3, 83, 82], animal flocks [25, 55, 63], and bacterial colonies [85]. These

mathematical approaches to swarming have also inspired algorithms for coopera-

tive control of robotic vehicles [57]. More questions for nonlocal particle systems

arise in physical chemistry: the self-assembly of nanoparticles [23, 44] and arrange-

ment of ions into spheres [58, 59] are just two examples. In the physical contexts

of granular gasses [71] and molecular dynamics simulations of matter [42], particle

systems also have a central role.

All of the above models, however multifaceted, share the same footing. Some

number of particles interact with each other pairwise such that any two particles

will repel each other when they are close and attract when they are far; typically,

this attractive force disappears at very long distances. These interactions can

generate rich steady states relevant to the models in which they arise.

Consider the case when the forces arise due to a pairwise interaction energy

E(x1, . . . ,xN) =
∑
i 6=j

P (|xi − xj|)

where xi denotes the position in Rd of the ith particle and P (r) is the potential

energy between two particles. P (r) is usually a function with a unique minimum

such that the force on one particle due to another, F (r) := −P ′(r), enjoys the

repulsive-attractive properties mentioned above. In this framework, a steady state

pattern can be understood as a minimizer of E.

We call the potential E confining if its minimizing configurations x1, . . . ,xN

stay contained inside a compact set as N → ∞. The question of whether or

not a given function P will result in a confining potential has been addressed in
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terms of the notion of H-stability in statistical mechanics; see [32]. For confin-

ing potentials, particles in ground states may reside in space-filling, co-dimension

zero configurations or concentrate on co-dimension one manifolds. The question of

which occurs is answered in [2] and the problem of characterizing ground states (or

steady states) has been discussed in [50, 51, 79, 87], and elsewhere. Applications

where both co-dimension zero and one solutions are of importance include bacte-

rial colony growth under stress, point vortex theory, and the Thomson problem

[1, 12, 22, 85].

It is a natural extension of the above work to consider the analogous problems

for two particle species; i.e., when more than one type of particle is present in

the interactions. Two-species models are relevant for the phenomena observed in

[59], where two types of macroions in solution will self-recognize and assemble

into hollow spherical structures. This self-recognition of particle species is a ro-

bust phenomenon observed in many of the numerical experiments considered in

this chapter. Two-species models also find application in large scale pedestrian

movement [73], and the well-posedness of said models has been considered in [27];

a general treatment of well-posedness for the two-species problem is given in [29].

Other applications include opinion formation in groups consisting of ordinary indi-

viduals and strong leaders [33] and two-species group consensus [36]. Two-species

bacterial aggregation driven by chemotaxis and diffusion is another area of active

research, where [54] employs a two-species model for localized vortex formation in

bacterial colonies. Global existence and finite time blowup are considered in [24]

and [37], [90] treats the n-species problem, and [45] and [80] discuss the stability

of uniform density and homogenous steady states.

Our numerical experiments have revealed phenomena which did not appear in

the single species problem. Particle species either mix or segregate based on the

relative strengths of the inter-species and intra-species forces, and occasionally

settle in domains with irregular boundaries including cusps. Asymmetric steady
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states (which represent local minimizers of the potential) can be observed, and

nontrivial structures form when particles are H-stable. These and other features

indicate a substantial increase in complexity of the two-species problem over the

single species problem.

In this chapter, our objective is to characterize steady states formed in the

two-species aggregation problem in the absence of diffusion. Inspired by physi-

cal [58] and numerical experiments exhibiting steady states supported on or near

co-dimension one manifolds, we wish to determine the circumstances under which

these steady states form and characterize their properties when possible. For ex-

ample, the authors of [87] were able to determine when the steady states exhibited

three-fold or five-fold symmetry, say.

One approach to this problem would be to work directly with the system of

N1 +N2 coupled ODEs, where N1 is the number of particles of species I and N2 is

analogous. The primary difficulty is that the number of unknowns increases as the

number of particles increases. It is still possible to pursue linear stability analysis,

but the number of linearly independent perturbations to consider grows with the

number of particles. Additionally, linear stability analysis hinges upon finding a

meaningful basis of eigen-perturbations (or modes) of the system. This reduces to

an eigenvector problem, but meaningful interpretation of the instabilities becomes

difficult. Moreover, the results will apply only for a particular choice of N1 and

N2, even though from physical and numerical experiemnts we expect that in many

cases the nature of the instabilities will not change after a certain number of

particles has been reached. For example, a mode-three instability manifesting as

a triangular arrangement of particles in the steady state (as in [51]) persists even

as more particles are considered.

An alternative method is to consider the limit as N1, N2 →∞. For the single-

species problem, this was the approach used successfully in [51, 87]. The method

of considering a continuum limit or hydrodynamic limit such as this has roots in

7



statistical mechanics, kinetic theory, and fluids [13, 48, 74]. When the potential

governing the particle interactions is confining, the continuum limit is meaning-

ful. When the potential is not confining for the single-species case, the particles

arrange into a regular lattice. In the two-species case, however, the lattice struc-

ture formed may have nontrivial structure depending on the relative interaction

strengths between the two types of particles. This phenomenon is explored nu-

merically in section 1.8.

In this part, we study the continuum limit of the problem and the stability of

a steady state consisting of two concentric rings of constant density. The theory

put forth accurately predicts instabilities observed in numerical experiments and

the breakup of ring solutions into fully two-dimensional patterns. The arguments

presented here are restricted to the two-dimensional problem, but adapting the

theory of [87] could generalize the results to higher dimensions.

1.3 Problem Description

Consider two species of particles, type I and type II, which occupy positions

x1(t), . . . ,xN1(t),y1(t), . . . ,yN2(t) in R2. Steady state patterns are minimizers of

the pairwise interaction energy

E(x1, . . . ,xN1 ,y1, . . . ,yN2) (1.3)

=

N1∑
i,j=1
i 6=j

P1(|xi − xj|) +

N2∑
i,j=1
i 6=j

P2(|yi − yj|) +

N1∑
i=1

N2∑
j=1

P3(|xi − yj|)

=:

N1∑
i,j=1
i 6=j

V1

(
1

2
|xi − xj|2

)
+

N2∑
i,j=1
i 6=j

V2

(
1

2
|yi − yj|2

)
+

N1∑
i=1

N2∑
j=1

V3

(
1

2
|xi − yj|2

)
.

Above, Vi(s) := Pi(
√

2s), i = 1, 2, 3, is simply a change of variables to simplify

the calculations.
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We are interested in gradient flow equations associated with (1.3):

dxi
dt

= −∂E
∂xi

= −∇xiE

=
1

N1

N1∑
j=1
j 6=i

g1

(
1

2
|xi − xj|2

)
(xi − xj) +

1

N1

N2∑
j=1

g3

(
1

2
|xi − yj|2

)
(xi − yj)

=
1

N1

N1∑
j=1
j 6=i

g1

(
1

2
|xi − xj|2

)
(xi − xj) + µ

1

N2

N2∑
j=1

g3

(
1

2
|xi − yj|2

)
(xi − yj)

(1.4)

for i = 1, . . . , N1, and

dyi
dt

= −∂E
∂yi

= −∇yiE

=
1

N1

N2∑
j=1
j 6=i

g2

(
1

2
|yi − yj|2

)
(yi − yj) +

1

N1

N1∑
j=1

g3

(
1

2
|yi − xj|2

)
(yi − xj)

= µ
1

N2

N2∑
j=1
j 6=i

g2

(
1

2
|yi − yj|2

)
(yi − yj) +

1

N1

N1∑
j=1

g3

(
1

2
|yi − xj|2

)
(yi − xj)

(1.5)

for j = 1, . . . , N2. The right-hand sides of (1.4) and (1.5) have been divided by

N1 as a simple rescaling of time, and in the second line the parameter µ := N2/N1

has been introduced. The factors 1/N1 and 1/N2 may also be seen as normalizing

each species by its total particle number or ‘mass’, in which case µ represents the

relative mass of species II to species I.

In the above, gi(s) := −dVi
ds

(s) for i = 1, 2, 3 give the ‘forces’ due to the

potentials. Note that gi(s) is the derivative of the rescaled potential V with

respect to its argument s = 1
2
r2, where r represents true particle distance. As

such, gi(s) represents the force only with respect to the rescaled space variable
1
2
r2. The true physical force— the derivative of the potential with respect to true

particle distances r and not just with respect to its argument 1
2
r2— has magnitude

rgi(
1
2
r2). The difference is illustrated in figure 1.3.
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One can think of the gradient flow either as an approximation to overdamped

second order physical dynamics or simply as a means to identify minimizers of

the energy. In the next section, we show that for large numbers of particles the

gradient flow system (1.4), (1.5) may be approximated by a nonlocal PDE system

of advection equations similar to the Birkhoff-Rott equation for vortex sheets (c.f.

[62, 78]), for which linear stability is reduced to a sequence of eigenvalue problems.

Criteria for the stability of each element in a basis of perturbations, and for linear

well-posedness of the concentric ring solution, are derived. Numerical examples

are presented, which demonstrate strong agreement with the theory put forth.

In this work we consider the following potentials, which have all been consid-

ered in the literature for the single species problem [32, 51, 56, 87]: the Morse

potential

Vi(s) = Crie
−
√

2s/lri − Caie−
√

2s/lai ,

power law forces

gi(s) = spi − sqi ,

and smoothed step discontinuity forces

gi(s) =
tanh

[
ai(1−

√
2s)
]

+ bi√
2s

with steady states pictured in figure 1.1. Combinations of all three of the above

types (and others) are also plausible; for example, g1 could arise from a power

law, g2 from the Morse potential, and g3 from the tanh force. See figure 1.2.

1.4 The Continuum Limit

For the two-species case, we will say that an energy E such as (1.3) is confining

if its minimizing configurations x1, . . . ,xN1 , y1, . . . ,yN2 stay contained inside a

compact set as N1 and N2 → ∞. Under the assumption that the energy E
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Figure 1.1: Steady states of the tanh potential with µ = 1, a1 = a2 = 10,

b1 = b2 = 0.1, a3 = 2 and b3 = −0.7,−0.5,−0.3,−0.1, 0.1, and 0.3 (from top

left to bottom right). Each steady state consists of 1000 white particles and 1000

black, with (1.4), (1.5) evolved to a final time t = 2000.
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Figure 1.2: Steady states with g1 and g2 tanh forces and g3 a Morse force. On the

left, a1 = a2 = 10, b1 = b2 = −0.3, Ca = la = Cr = 1 and lr = 0.1. On the right,

a1 = a2 = 10, b1 = b2 = 0.1, Ca = la = Cr = 1 and lr = 0.02.
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(

1
2
r2
)
with respect to

rescaled space, and rg
(

1
2
r2
)
with respect to physical space. Tanh parameters

a = 10, b = 0.1; Morse parameters Ca = la = Cr = 1, lr = 0.1.
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is confining, the configurations of discrete particles approach continuum spatial

densities ρ1 and ρ2.

As we are interested in the stability of concentric ring solutions, we seek den-

sities which are supported along one-dimensional curves Γ1(t) = Φ1(α, t) and

Γ2(t) = Φ2(α, t) (parameterized by α ∈ D ⊂ R) which evolve with velocity fields

v1 and v2; that is,

∂Φ1

∂t
(α, t) = v1(Φ1(α, t), t)

∂Φ2

∂t
(α, t) = v2(Φ2(α, t), t). (1.6)

The velocity fields v1 and v2 are determined from the respective densities by the

continuum limits of equations (1.4) and (1.5): for x ∈ R2,

v1(x, t) =

∫
R2

g1

(
1

2
|x− y|2

)
(x− y)ρ1(y, t) + g3

(
1

2
|x− y|2

)
(x− y)ρ2(y, t) dy

v2(x, t) =

∫
R2

g2

(
1

2
|x− y|2

)
(x− y)ρ2(y, t) + g3

(
1

2
|x− y|2

)
(x− y)ρ1(y, t) dy,

(1.7)

where we must assume that N2/N1 → µ as N1, N2 → ∞. The parameter µ is

absorbed into ρ2 and still represents the relative mass

µ =

∫
R2 ρ2∫
R2 ρ1

.

To determine the dynamics of ρ1, ρ2, Φ1, and Φ2 completely, we impose conser-

vation of mass:

∂ρ1

∂t
+∇·(ρ1v1) = 0

∂ρ2

∂t
+∇·(ρ2v2) = 0, (1.8)

which is implicit in the particle formulation of the problem. Equations (1.6), (1.7),

and (1.8) specify a nonlocal coupled advection system determining Φ1 and Φ2,

from which ρ1 and ρ2 will be recovered later; see, for example, [78] and [87].
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It is worth pointing out here that the ρi are densities of measures singular with

respect to Lebesgue measure on R2. Therefore, they should solve (1.8) weakly, or

in the sense of distributions. We will assume there exist fi locally integrable on

R such that for Borel sets E ⊆ R2,∫
E

ρi(x, t) dx =

∫
{α: Φi(α,t)∈E}

fi(α, t) dα

=:

∫
{α: Φi(α,t)∈E}

ρsi (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣ dα
where ρsi admits the natural interpretation of the density along the surface Γi. It

then follows that for ψ ∈ C∞c (R2 × [0,∞]),∫ ∞
0

∫
R2

ψ(x, t)ρi(x, t) dxdt =

∫ ∞
0

∫
D

ψ(Φi(α, t), t)fi(α, t) dαdt

=

∫ ∞
0

∫
D

ψ(Φi(α, t), t)ρ
s
i (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣ dαdt.
One can now integrate by parts from (1.8) to define what it means for ρi to be a

solution: for all ψ ∈ C∞c (R2 × [0,∞]),∫ ∞
0

∫
D

(
∂ψ

∂t
+ vi ·∇ψ

)
(Φi(α, t), t)fi(α, t) dαdt = 0.

Noting that
(
∂ψ
∂t

+ vi ·∇ψ
)

(Φi(α, t), t) = d
dt
ψ(Φi(α, t), t)), one can integrate by

parts to get

0 =

∫ ∞
0

∫
D

d

dt
ψ(Φi(α, t), t))fi(α, t) dαdt

= 0−
∫ ∞

0

∫
D

ψ(Φi(α, t), t))
∂

∂t
fi(α, t) dαdt,

where the boundary term drops out because ψ is compactly supported. It follows

that f(α, t) ≡ f(α, 0) =: f 0(α).

We also rewrite (1.7) in terms of integrals along Γ1 and Γ2:

v1(x, t) =

∫
D

g1

(
1

2
|x−Φ1(α, t)|2

)
(x−Φ1(α, t))f 0

1 (α)+

g3

(
1

2
|x−Φ2(α, t)|2

)
(x−Φ2(α, t))f 0

2 (α) dα,
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v2(x, t) =

∫
D

g2

(
1

2
|x−Φ2(α, t)|2

)
(x−Φ2(α, t))f 0

2 (α)+

g3

(
1

2
|x−Φ1(α, t)|2

)
(x−Φ1(α, t))f 0

1 (α) dα.

Appealing to (1.6) then yields

∂Φ1

∂t
(α, t) = v1(Φ1(α, t), t)

=

∫
D

g1

(
1

2
|Φ1(α, t)−Φ1(α′, t)|2

)
(Φ1(α, t)−Φ1(α′, t))f 0

1 (α′)

+ g3

(
1

2
|Φ1(α, t)−Φ2(α′, t)|2

)
(Φ1(α, t)−Φ2(α′, t))f 0

2 (α′) dα′

(1.9)

and

∂Φ2

∂t
(α, t) = v2(Φ2(α, t), t)

=

∫
D

g2

(
1

2
|Φ2(α, t)−Φ2(α′, t)|2

)
(Φ2(α, t)−Φ2(α′, t))f 0

2 (α′)

+ g3

(
1

2
|Φ2(α, t)−Φ1(α′, t)|2

)
(Φ2(α, t)−Φ1(α′, t))f 0

1 (α′) dα′.

(1.10)

The two equations above determine Φi. With these in hand, all that is left is to

determine ρi; for this,

0 =
∂

∂t
fi(α, t) =

∂

∂t

(
ρsi (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣)
implies that

∂ρsi
∂t

= −ρsi
∂
∂t

∣∣∂Φi

∂α

∣∣∣∣∂Φi

∂α

∣∣ ,
which is enough.

Note that when ρ1(x, t) =
∑N1

i=1 δ(x− xi(t)) and ρ2(x, t) =
∑N2

i=1 δ(x− yi(t)),

the equations (1.7) evaluated for v1 at xi and v2 at yi reproduce (1.4) and (1.5)

exactly, up to the time scaling introduced.

Before we proceed to the next section and linearize around the concentric ring

steady state, it is worthwhile to consider the existence of such a steady state.
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If Φ1 and Φ2 parameterize concentric circles of radii R1 and R2, we can take

D = [−π, π) and Φi(s) = Θ(s)Rie1 (as in [87]) with

Θ(s′) =

cos s′ − sin s′

sin s′ cos s′

 .
With no motion in time, equations (1.9) and (1.10) give

0 =

∫ π

−π
g1

(
1

2
|Φ1(s)−Φ1(s′)|2

)
(Φ1(s)−Φ1(s′))f 0

1 (s′)+

g3

(
1

2
|Φ1(s)−Φ2(s′)|2

)
(Φ1(s)−Φ2(s′))f 0

2 (s′) ds′,

0 =

∫ π

−π
g2

(
1

2
|Φ2(s)−Φ2(s′)|2

)
(Φ2(s)−Φ2(s′))f 0

2 (s′)+

g3

(
1

2
|Φ2(s)−Φ1(s′)|2

)
(Φ2(s)−Φ1(s′))f 0

1 (s′) ds′.

The (constant) densities and radii must satisfy∫ π

−π
f 0
i (s′) ds′ = ρsiRi = mi,

where mi =
∫
R2 ρi is the total mass of species i. In the discrete case, mi = Ni and

so m2/m1 = N2/N1 = µ. Note that

f 0
i (s′) = ρsi

∣∣∣∣∂Φ

∂s′

∣∣∣∣ = ρsiRi,

so µ = f 0
2 /f

0
1 , and the above equations can be rewritten

0 =

∫ π

−π
g1

(
1

2
|Φ1(s)−Φ1(s′)|2

)
(Φ1(s)−Φ1(s′))+

µg3

(
1

2
|Φ1(s)−Φ2(s′)|2

)
(Φ1(s)−Φ2(s′)) ds′,

0 =

∫ π

−π
µg2

(
1

2
|Φ2(s)−Φ2(s′)|2

)
(Φ2(s)−Φ2(s′))+

g3

(
1

2
|Φ2(s)−Φ1(s′)|2

)
(Φ2(s)−Φ1(s′)) ds′.
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From the definition of Φi,

Φi(s)−Φj(s
′) = Θ(s)[RiI −RjΘ(s′ − s)] e1 = Θ(s)

Ri −Rj cos(s′ − s)

−Rj sin(s′ − s)

 ,
and so

|Φi(s)−Φj(s
′)|2 = R2

i +R2
j − 2RiRj cos(s′ − s).

We may cancel Θ(s) from both equations and reparameterize the integrals so that

s disappears as well, to reach

0 =

∫ π

−π
g1(R2

1(1− cos s′))

R1 −R1 cos s′

−R1 sin s′

+

µg3

(
R2

1 +R2
2

2
−R1R2 cos s′

)R1 −R2 cos s′

−R2 sin s′

 ds′,

0 =

∫ π

−π
µg2

(
R2

2(1− cos s′)
)R2 −R2 cos s′

−R2 sin s′

+

g3

(
R2

1 +R2
2

2
−R1R2 cos s′

)R2 −R1 cos s′

−R1 sin s′

 ds′.

The second component of each integral cancels because it is odd on (−π, π), and

so we are left with

0 =

∫ π

−π
R1g1(R2

1(1− cos s′))(1− cos s′)+ (1.11a)

µg3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
(R1 −R2 cos s′) ds′

0 =

∫ π

−π
µR2g2

(
R2

2(1− cos s′)
)

(1− cos s′)+ (1.11b)

g3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
(R2 −R1 cos s′) ds′,

which determine R1 and R2. So long as (1.11a) and (1.11b) have solutions, the

concentric ring steady state exists. Of course, the integrands of (1.11a) and (1.11b)
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must be in L1[−π, π], which is true if gi(t)t1/2 ∈ L1[0, 1] and the gi have no

singularities away from the origin. Assuming also that Vi(t)t−1/2 ∈ L1[0, 1], one

can define

F (R1, R2) :=

∫ π

−π

1

2
V1

(
R2

1(1− cos s′)
)

+
µ2

2
V2

(
R2

2(1− cos s′)
)

+

µV3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
ds′

and observe that (1.11a) arises as ∂F
∂R1

= 0 and (1.11b) as ∂F
∂R2

= 0. Then if g1, g2,

and g3 are continuous (except perhaps at the origin— for commonly encountered

potentials such as the Morse or Lennard-Jones potentials, this is the case) (1.11a)

and (1.11b) will be satisfied at a maximum or minimum of F . To show, then, that

solutions R1 and R2 exist, it suffices to show that F attains a minimum for some

R1, R2 > 0.

A general proof of this fact is difficult because the potentials Vi will vary, and

in some cases a concentric ring solution may not exist. However, for all cases

pursued below, (1.11a) and (1.11b) have solutions R1, R2 which do give rise to a

steady state solution to (1.9) and (1.10).

1.5 Linearization & Eigenvalue Problem

Recall that the rings have been parameterized as Φi(s) = Θ(s)Rie1 (where Θ is a

rotation matrix). Consider now a small perturbation of each ring in the form

δΦi(s) = Θi(s)
(
Rie1 + eλtεi(s)

)
= Φi(s) + Θ(s)eλtεi(s)

so that (defining Ai,Bi,C,D,E,F)

δΦi(s)− δΦi(s
′) = (Φi(s)−Φi(s

′)) + eλt[Θ(s)εi(s)−Θ(s′)εi(s
′)] =: Ai + eλtBi,

δΦ1(s)− δΦ2(s′) = (Φ1(s)−Φ2(s′)) + eλt[Θ(s)ε1(s)−Θ(s′)ε2(s′)] =: C + eλtD,

δΦ2(s)− δΦ1(s′) = (Φ2(s)−Φ1(s′)) + eλt[Θ(s)ε2(s)−Θ(s′)ε1(s′)] =: E + eλtF.
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Linearizing (1.9) and (1.10), then canceling the factor of eλt appearing in each

term gives

λΘ(s)ε1(s) =

∫ 2π

0

g1

(
1

2
|A1|2

)
B1 +

dg1

ds

(
1

2
|A1|2

)
(A1 ·B1)A1+

µg3

(
1

2
|C|2

)
D + µ

dg3

ds

(
1

2
|C|2

)
(C·D)C ds′,

λΘ(s)ε2(s) =

∫ 2π

0

µg2

(
1

2
|A2|2

)
B2 + µ

dg2

ds

(
1

2
|A2|2

)
(A2 ·B2)A2+

g3

(
1

2
|E|2

)
F +

dg3

ds

(
1

2
|E|2

)
(E·F)E ds′.

To simplify calculations below, define M = M(s, s′) := Θ−1(s)Θ(s′), and

ui = Θ−1(s)Ai ũi = (I −MT )Rie1

v = Θ−1(s)C ṽ = (R2I −R1M
T )e1

w = Θ−1(s)E w̃ = (R1I −R2M)e1.

Then

Θ−1(s)Ai =(I −M)Rie1 = ui Θ−1(s)Bi = εi(s)−Mεi(s
′)

Θ−1(s)C = (R1I −R2M)e1 = v Θ−1(s)D = ε1(s)−Mε2(s′)

Θ−1(s)E = (R2I −R1M)e1 = w Θ−1(s)F = ε2(s)−Mε1(s′)

and because Θ and M are unitary,

Ai ·Bi =[Θ(s)(I −M)Rie1] ·[Θ(s)εi(s)]− [Θ(s)(I −M)Rie1]·[Θ(s)Mεi(s
′)]

= (I −M)Rie1 ·εi(s)− (I −M)Rie1 ·Mεi(s
′)

= (I −M)Rie1 ·εi(s) + (I −MT )Rie1 ·εi(s′),

= ui ·εi(s) + ũi ·εi(s′),

C·D = (R1I −R2M)e1 ·ε1(s) + (R2I −R1M
T )e1 ·ε2(s′)

= v·ε1(s) + ṽ·ε2(s′),

E·F = (R2I −R1M)e1 ·ε2(s) + (R1I −R2M
T )e1 ·ε1(s′)

= w·ε2(s) + w̃·ε1(s′).
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Finally,

|Ai| = |Θ−1Ai| = |ui|

|Ci| = |Θ−1Ci| = |vi|

|Ei| = |Θ−1Ei| = |wi|.

In terms of these quantities, multiplying the linearized equations by Θ−1 and

collecting terms multiplied by εi(s) and εi(s
′) leaves

λε1(s) =

∫ π

−π

[
g1

(
1

2
|u1|2

)
I +

dg1

ds

(
1

2
|u1|2

)
u1 ⊗ u1+ (1.12)

µg3

(
1

2
|v|2
)
I + µ

dg3

ds

(
1

2
|v|2
)

v ⊗ v

]
ε1(s) ds′

+

∫ π

−π

[
−g1

(
1

2
|u1|2

)
M +

dg1

ds

(
1

2
|u1|2

)
u1 ⊗ ũ1

]
ε1(s′) ds′

+

∫ π

−π

[
−µg3

(
1

2
|v|2
)
M + µ

dg3

ds

(
1

2
|v|2
)

v ⊗ ṽ

]
ε2(s′) ds′,

λε2(s) =

∫ π

−π

[
µg2

(
1

2
|u2|2

)
I + µ

dg2

ds

(
1

2
|u2|2

)
u2 ⊗ u2+ (1.13)

g3

(
1

2
|w|2

)
I +

dg3

ds

(
1

2
|w|2

)
w ⊗w

]
ε2(s) ds′

+

∫ π

−π

[
−µg2

(
1

2
|u2|2

)
M + µ

dg2

ds

(
1

2
|u2|2

)
u2 ⊗ ũ2

]
ε2(s′) ds′

+

∫ π

−π

[
−g3

(
1

2
|w|2

)
M +

dg3

ds

(
1

2
|w|2

)
w ⊗ w̃

]
ε1(s′) ds′.

Explicitly,
1

2
|ui(s− s′)|2 = R2

i (1− cos(s− s′))

1

2
|v(s− s′)|2 =

1

2
|w(s− s′)|2 =

1

2

[
R2

1 +R2
2 − 2R1R2 cos(s− s′)

]

ui = Ri

1− cos(s′ − s)

− sin(s′ − s)

 , ũi = Ri

1− cos(s′ − s)

sin(s′ − s)


v =

R1 −R2 cos(s′ − s)

−R2 sin(s′ − s)

 , ṽ =

R1 −R2 cos(s′ − s)

R2 sin(s′ − s)
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w =

R2 −R1 cos(s′ − s)

−R1 sin(s′ − s)

 , w̃ =

R2 −R1 cos(s′ − s)

R1 sin(s′ − s)


and u⊗ v denotes the matrix with i, j entry uivj.

Note that all the above matrices have even, periodic entries along the diagonals

and odd, periodic entries off. With this in mind, consider (1.12) rewritten as

λε1(s) =

∫ 2π

0

M1(s′−s) ds′ε1(s)+

∫ 2π

0

M2(s′−s)ε1(s′) ds′+

∫ 2π

0

M3(s′−s)ε2(s′) ds′

(the superscripts are used to distinguish matrices, not as powers) where the di-

agonal entries of M1,M2, and M3 are even and periodic, and off-diagonal entries

are odd and periodic. It follows that∫ 2π

0

M1(s′ − s) ds′ε1(s)

is a constant diagonal matrix times ε1(s). For the other two terms, we hope for

similar results to yield an eigenvalue problem in εi and λ. Using the ansatz

ε1(s) =

x1 cos(ns)

x2 sin(ns)

 , ε2(s) =

y1 cos(ns)

y2 sin(ns)


similar to that of [51], we compute the terms above involving M2 and M3:∫ 2π

0

M2(s− s′)ε1(s′) ds′

=

∫ 2π

0
M2

11(s− s′)x1 cos(ns′) +M2
12(s− s′)x2 sin(ns′) ds′∫ 2π

0
M2

21(s− s′)x1 cos(ns′) +M2
22(s− s′)x2 sin(ns′) ds′

 .
The first entry is a linear combination of∫ 2π

0

M2
11(s′ − s) cos(ns′) ds′ =

∫ 2π

0

M2
11(θ) cos(nθ + ns) dθ

= cos(ns)

∫ 2π

0

M2
11(θ) cos(nθ) dθ − sin(ns)

∫ 2π

0

M2
11(θ) sin(nθ) dθ

= cos(ns)

∫ 2π

0

M2
11(θ) cos(nθ) dθ + 0 (because M2

11 is even)

∝ cos(ns), (1.14a)
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and

∫ 2π

0

M2
12(s′ − s) sin(ns′) ds′ =

∫ 2π

0

M2
12(θ) sin(nθ + ns) dθ

= cos(ns)

∫ 2π

0

M2
12(θ) sin(nθ) dθ + sin(ns)

∫ 2π

0

M2
12(θ) cos(nθ) dθ

= cos(ns)

∫ 2π

0

M2
12(θ) sin(nθ) dθ + 0 (because M2

12 is odd)

∝ cos(ns); (1.14b)

the second entry,

∫ 2π

0

M2
21(s′ − s) ∝ sin(ns) (1.14c)

and

∫ 2π

0

M2
22(s′ − s) ∝ sin(ns) (1.14d)

after similar calculations. All together,∫ 2π

0

M2(s− s′)ε1(s′) ds′ = a(n)ε1(s)

where a is a diagonal matrix. The third term will be similar and will give a

diagonal matrix multiple of ε2, so that the equation for ε1 becomes

λ

x1 cos(ns)

x2 sin(ns)

 = a(n)

x1 cos(ns)

x2 sin(ns)

+ b(n)

y1 cos(ns)

y2 sin(ns)


(a and b are matrix-valued functions) and the equation for ε2 is

λ

y1 cos(ns)

y2 sin(ns)

 = c(n)

y1 cos(ns)

y2 sin(ns)

+ d(n)

x1 cos(ns)

x2 sin(ns)

 .
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Comparing coefficients of cos(ns) and sin(ns) results in an eigenvalue problem

for x1, x2, y1, and y2:

λ

x1

x2

 =
(
M1 + M2(n)

)x1

x2

+ M3(n)

y1

y2


λ

y1

y2

 = M4(n)

x1

x2

+
(
M5 + M6(n)

)y1

y2

 ,
or

E(n)

x

y

 = λ(n)

x

y

 , with E =

M1 + M2 M3

M4 M5 + M6

 . (1.15)

M1, . . . ,M6 are computed as in (1.14a—1.14d) and are shown below; here, ui,

v, and w are functions of θ. M1 and M5 are diagonal and do not depend on n.

The first two matrices determine the stability of the species I particle ring with

respect to frequency n perturbations, with the species II ring remaining fixed:

M1
11 =

∫ π

−π
g1

(
1

2
|u1|2

)
+
dg1

ds

(
1

2
|u1|2

)
(R1 −R1 cos(s′))

2
+

µg3

(
1

2
|v|2
)

+ µ
dg3

ds

(
1

2
|v|2
)

(R1 −R2 cos(s′))2 ds′

M1
22 =

∫ π

−π
g1

(
1

2
|u1|2

)
+
dg1

ds

(
1

2
|u1|2

)
R2

1 sin2(s′)+

µg3

(
1

2
|v|2
)

+ µ
dg3

ds

(
1

2
|v|2
)
R2

2 sin2(s′) ds′.

M2
11(n) =

∫ π

−π

[
−g1

(
1

2
|u1|2

)
cos(θ) +R2

1

dg1

ds

(
1

2
|u1|2

)
(1− cos(θ))2

]
cos(nθ) dθ

M2
12(n) =

∫ π

−π

[
g1

(
1

2
|u1|2

)
sin(θ)+R2

1

dg1

ds

(
1

2
|u1|2

)
(1− cos(θ)) sin(θ)

]
sin(nθ) dθ

M2
21(n) = M2

12

M2
22(n) =

∫ π

−π

[
−g1

(
1

2
|u1|2

)
cos(θ)−R2

1

dg1

ds

(
1

2
|u1|2

)
sin2(θ)

]
cos(nθ) dθ

= 0
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after integrating by parts and using (1.11a).

Due to symmetry in the problem, the off-diagonal blocks M3 and M4 are

similar. M3 represents the effect of a perturbation of the species II particles on

the ring of species I particles; M4, the effect of a perturbation of the species I ring

on the species II ring:

M3
11(n) = µ

∫ π

−π

[
−g3

(
1

2
|v|2
)

cos(θ) +
dg3

ds

(
1

2
|v|2
)

(R1 −R2 cos(θ))2

]
cos(nθ) dθ

M3
12(n) =µ

∫ π

−π

[
g3

(
1

2
|v|2
)

sin(θ)+
dg3

ds

(
1

2
|v|2
)
R2(R1−R2 cos(θ)) sin(θ)

]
sin(nθ)dθ

M3
21(n) = M3

12

M3
22(n) = µ

∫ π

−π

[
−g3

(
1

2
|v|2
)

cos(θ)− dg3

ds

(
1

2
|v|2
)
R2

2 sin2(θ)

]
cos(nθ) dθ.

M4
11(n) =

∫ π

−π

[
−g3

(
1

2
|w|2

)
cos(θ) +

dg3

ds

(
1

2
|w|2

)
(R2 −R1 cos(θ))2

]
cos(nθ) dθ

M4
12(n) =

∫ π

−π

[
g3

(
1

2
|w|2

)
sin(θ)+

dg3

ds

(
1

2
|w|2

)
R1(R2−R1 cos(θ)) sin(θ)

]
sin(nθ)dθ

M4
21(n) = M4

12

M4
22(n) =

∫ π

−π

[
−g3

(
1

2
|w|2

)
cos(θ)− dg3

ds

(
1

2
|w|2

)
R2

1 sin2(nθ)

]
cos(nθ) dθ.

The final two matrices M5 and M6 are analogous to M1 and M2, except they

determine the stability of the species II ring:

M5
11 =

∫ π

−π
µg2

(
1

2
|u2|2

)
+ µ

dg2

ds

(
1

2
|u2|2

)
(R2 −R2 cos(s′))2+

g3

(
1

2
|w|2

)
+
dg3

ds

(
1

2
|w|2

)
(R2 −R1 cos(s′))2 ds′

M5
22 =

∫ π

−π
µg2

(
1

2
|u2|2

)
+ µ

dg2

ds

(
1

2
|u2|2

)
R2

2 sin2(s′)+

g3

(
1

2
|w|2

)
+
dg3

ds

(
1

2
|w|2

)
R2

1 sin2(s′) ds′ = 0
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after integrating by parts and using (1.11b), and

M6
11(n) =µ

∫ π

−π

[
−g2

(
1

2
|u2|2

)
cos(θ) +R2

2

dg2

ds

(
1

2
|u2|2

)
(1− cos(θ))2

]
cos(nθ) dθ

M6
12(n) =µ

∫ π

−π

[
g2

(
1

2
|u2|2

)
sin(θ)+R2

2

dg2

ds

(
1

2
|u2|2

)
(1− cos(θ)) sin(θ)

]
sin(nθ)dθ

M6
21(n) = M6

21

M6
22(n) = µ

∫ π

−π

[
−g2

(
1

2
|u2|2

)
cos(θ)−R2

2

dg2

ds

(
1

2
|u2|2

)
sin2(θ)

]
cos(nθ) dθ.

1.6 Linear Well-posedness

Here we consider the limit of the eigenvalue problem (1.15) as n→∞. The goal

is linear well-posedness ; that is, to determine when the eigenvalues λ(n) of (1.15)

satisfy λ(n) < 0 as n→∞. That λ(n)→ 0 as n→∞ follows immediately from

the Riemann-Lebesgue lemma; the requirement that the eigenvalues approach

zero from below is important because it demonstrates that all but finitely many

modes are stable. Intuitively, if modes of arbitrarily high frequency are unstable,

the co-dimension one curve will break apart and the density will form a fully

two-dimensional pattern.

Theorem 1.6.1 (Linear well-posedness). Assume that the forces have power se-

ries representations

g1(s) = a0s
p0 + a1s

p1 + . . . (1.16a)

g2(s) = b0s
q0 + b1s

q1 + . . . (1.16b)

g3(s) = c0s
r0 + c1s

r1 + . . . (1.16c)

with a0, b0 > 0 and c0 6= 0, valid in some neighborhood of the origin, where

p0 < p1 < . . . etc. Define α = M1
11 and β = M5

11.

If R1 6= R2, then the concentric ring solution to (1.9, 1.10) is linearly well-
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posed if and only if

α < 0, p0 ∈
(
−1

2
, 0

)
∪
∞⋃
n=0

(2n+ 1, 2n+ 2), (1.17a)

β < 0, q0 ∈
(
−1

2
, 0

)
∪
∞⋃
n=0

(2n+ 1, 2n+ 2). (1.17b)

If R1 = R2, g1 = g2, and µ = 1, the concentric ring solution to (1.9, 1.10)

is linearly well-posed if and only if (1.17a) holds and either r0 is a nonnegative

integer or r0 > p0.

Before moving on to the proof, a remark is in order. Theorem 1.6.1 as stated

does not cover the cases when R1 = R2 but g1 6= g2 or µ 6= 1. However, (1.11a)

and (1.11b) point out that unless µ = 1 and g1 = g2, it is very unlikely that

R1 = R2; for two arbitrary potentials g1, g2 and ratio µ, it is a measure-zero type

event that the radii equations would have such solutions.

Proof of Theorem 1.6.1. The analysis relies primarily on asymptotic expressions

for the integrals occurring in M1, . . . ,M6, which necessitates the assumptions of

(1.16). Substituting (1.16) into the formulas for M1, . . . ,M6 leaves an eigenvalue

problem where each entry of E is a potentially infinite sum of integrals. However,

showing that E has negative eigenvalues is equivalent to showing its leading minors

alternate sign, and it is easy to see that in each entry of E, only those terms which

decay most slowly will affect the eigenvalues in the limit.

In practice, the values α = M1
11 and β = M2

11 must be evaluated analytically

or numerically, because they are independent of n. Other entries of E may be

evaluated asymptotically, and considering one of these entries gives an idea of

26



how to proceed:

M2
11 ∼ a0R

2p0
1

∫ π

−π
−(1− cos θ)p0 cos(θ) cos(nθ) + p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

∫ π

−π
−(1− cos θ)p0

1

2
[cos(n− 1)θ + cos(n+ 1)θ] +

p0(1− cos θ)p0+1 cos(nθ) dθ

where we used the trig identity

cos(x) cos(y) =
cos(x− y) + cos(x+ y)

2
.

By a similar use similar identities, it turns out that all entries of E reduce to linear

combinations of one integral:

I(c, n, p) =

∫ π

−π
(c− cos θ)p cosnθ dθ,

and we are interested in the behavior of I for fixed c and p as n→∞.

For c = 1 and p > −1/2 (which is necessary for the integrals to converge), an

explicit formula with asymptotics is available from [87]:

I(1, n, p) ∼ −C(p) sin(πp)

n2p+1
(1.18)

where C(p) > 0 is a positive constant depending on p. This asymptotic form may

also be arrived at by stationary phase analysis.

For c > 1, it can be shown readily via integration by parts that I decays faster

than any polynomial: for any integer k, there exists a constant C(c, p, k) such

that

|I(c, n, p)| < C(c, p, k)n−k. (1.19)

For M2 and M6, (1.18) gives the relevant rates of decay. M3 and M4 are more

complicated and the analysis breaks into cases.
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Case I: R1 6= R2. In this case (1.19) shows that M3 and M4 approach zero

faster than any of the other entries of E, and (1.15) asymptotically decouples into

two quasi-single species problems

(M1 + M2)

x1

x2

 = λ(n)

x1

x2

 and (M5 + M6)

y1

y2

 = λ(n)

y1

y2

 . (1.20)

Before moving on, it is worth pointing out that the decoupling has a pleasant

physical interpretation. M3 represents the effects of perturbations of the species

II particle ring on the species I particle ring, and vice versa for M4. The fact that

these vanish from (1.15) as n → ∞ means that, when R1 6= R2, high frequency

perturbations of the ring of species I particles have no effect on the eventual

stability of the ring of species II (and vice versa).

For each of the problems in (1.20) to have negative eigenvalues, it is necessary

and sufficient that

tr(M1 + M2) < 0, det(M1 + M2) > 0,

tr(M5 + M6) < 0, det(M5 + M6) > 0. (1.21)

We turn first to M2: substituting in the assumed power series representation

of g1 and discarding all but the most slowly decaying terms,

M2
11 ∼ a0R

2p0
1

∫ π

−π
−(1− cos θ)p0 cos(θ) cos(nθ) + p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

∫ π

−π
−(1− cos θ)p0

1

2
[cos(n− 1)θ + cos(n+ 1)θ] +

p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

[
−1

2
I(1, n− 1, p0) + p0I(1, n, p0 + 1)− 1

2
I(1, n+ 1, p0)

]
∼ a0R

2p0
1 C(p0) sin(πp0)

2

[
1

(n− 1)2p0+1
+

1

(n+ 1)2p0+1

]
∼ a0R

2p0
1 C(p0) sin(πp0)

n2p0+1
,
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M2
12 ∼ a0R

2p0
1

∫ π

−π
(1− cos θ)p0 sin(θ) sin(nθ) + p0(1− cos θ)p0 sin(θ) sin(nθ) dθ

= a0R
2p0
1

[
p0 + 1

2
I(1, n− 1, p0)− p0 + 1

2
I(1, n+ 1, p0)

]
= −a0R

2p0
1 C(p0) sin(πp0)(p0 + 1)

2

[
1

(n− 1)2p0+1
− 1

(n+ 1)2p0+1

]
∼ −a0R

2p0
1 C(p0) sin(πp0)(p0 + 1)(2p0 + 1)

n2p0+2
,

and M2
21 = M2

12. The final entry is treated by integration by parts:

M2
22 =

∫ π

−π
−g1(R2

1(1− cos θ)) cos θ cos(nθ)

− d

dθ

[
g1(R2

1(1− cos θ))
]

sin θ cos(nθ) dθ

= −n
∫ π

−π
g1(R2

1(1− cos θ)) sin θ sin(nθ) dθ

∼ −na0R
2p0
1

2

∫ π

−π
(1− cos θ)p0 [cos(n− 1)θ − cos(n+ 1)θ]

= −na0R
2p0
1

2
[I(1, n− 1, p0)− I(1, n+ 1, p0)]

=
na0R

2p0
1 C(p0) sin(πp0)

2

[
1

(n− 1)2p0+1
− 1

(n+ 1)2p0+1

]
∼ a0R

2p0
1 C(p0) sin(πp0)(2p0 + 1)

n2p0+1
.

The analogous work for M6 looks almost exactly the same, except with q0 replacing

p0.

With those expansions in hand, one can asymptotically compute the terms

appearing in (1.21):

tr(M1 + M2) ∼ α

det(M1 + M2) ∼ αM2
22

and so we need only require that α < 0 and M2
22 < 0. The asymptotic expression

for the latter is negative so long as sin(πp0) is, and this leads to (1.17a). The

problem for M5 + M6 is nearly identical, and yields (1.17b) in exactly the same
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way. It is worth noting here that the criteria for linear well-posedness are very

similar to those for the single-species case explored in [51] and [87].

Case II: R1 = R2 =: R. As mentioned earlier, this is very unlikely unless g1 = g2

and µ = 1; so, we will assume that is the case. Then M1 = M5, M2 = M6, and

M3 = M4, so E simplifies; however, the rate of decay of M3 is not as fast now and

so it must be taken into account. We determine when E has negative eigenval-

ues by checking when its leading minors alternate sign. Asymptotics for M3 are

necessary, but M3 has the same form as M2 with g3 replacing g1 and R replacing

R1:

M3
11 ∼

c0R
2r0C(r0) sin(πr0)

n2r0+1
,

M3
12 = M3

21 ∼ −
c0R

2r0C(r0) sin(πr0)(r0 + 1)(2r0 + 1)

n2r0+2
,

M3
22 ∼

c0R
2r0C(r0) sin(πr0)(2r0 + 1)

n2r0+1
.

The first minor of E is then (M1 + M2(n))11 → α as n → ∞, so we must

require that α < 0 .

The second minor is det(M1 +M2(n)) ∼ αM2
22 (see case I), so we require that

(1.17a) holds.

The third minor begins to include terms from the cross-particle interaction

force g3, and works out to be (to leading order in n)

α2M2
22 − α(M3

12)2 = −C1n
−(2p0+1) + C2 sin2(πr0)n−(4r0+4)

where C1 and C2 are some positive constants with respect to n. We have already

required for the first and second minors that α < 0 and M2
22 < 0, which is why

the first term is negative and the second is positive. So we must require that

r0 is a nonnegative integer or 2p0 + 1 < 4r0 + 4.
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The fourth minor works out to be (again to leading order)

α2
[
(M2

22)2 − (M3
22)2
]

= C1n
−2(2p0+1) − C2 sin2(πr0)n−2(2r0+1)

where C1 and C2 again denote positive constants. So we must require that

r0 is a nonnegative integer or r0 > p0.

These restrictions also imply that the third minor is negative. This last minor

gives the final requirement for the double ring solution to be linearly well-posed

and yields the criterion in the theorem for the R1 = R2 case.

1.7 Numerical Examples

All numerical solutions here and in figure 1.1 were computed using a simple for-

ward Euler scheme with an adaptive time step chosen as large as possible while

requiring that the energy of the system (1.3) decreases at each time step. A scheme

with higher order accuracy is not necessary, since we only seek a minimizer of the

energy (1.3). Alternatively, choosing a time step based on an estimate of the local

truncation error (as in [52]) is also efficient and yields the same results. All initial

conditions are taken to be independently, uniformly distributed on a square.

1.7.1 Mixing or Separation of the Two Species

The theoretical predictions agree very well with numerical observations. Figure

1.4 shows an example in which the two particle species may mix or segregate

based on the relative strengths of the inter-species and intra-species interactions.

The numerical destabilization of the alternating ring structure and appearance of

mode two instability coincides exactly with the negative to positive sign change

of an eigenvalue of (1.15) with n = 2.

Generally, it was observed that when symmetric intra-species interactions g1 =

g2 are stronger near the origin than the inter-species interaction g3, mixing of the
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Figure 1.4: Left: An alternating particle ring. Forces g1(s) = g2(s) = 1+2(1−s)+

s−1/4 − 0.9357796257, g3(s) = 0.5g1(s). Center: Separated particle ring. Forces

g1 and g2 are the same as on the left, but g3 = 1.01g1. Right: the true, physical

force rg1(r2/2).

species tends to occur; when g3 is stronger, separation tends to occur. See figure

1.9. Self-recognition of species (figure 1.5) may be considered a particular type of

separation, and inasmuch as it can be characterized by a mode one instability it

can be predicted using theorem 1.6.1.

1.7.2 Instabilities of Low-frequency Modes

Figure 1.5 shows examples of mode five and mode one instabilities. The alternat-

ing, symmetric mode five arises from interaction forces defined in terms of

G3(s) = 1 + (1− s) + (1− s)2, (1.22)

G5(s) =
3

2
(1− s)2 + (1− s)3 − (1− s)4,

G0(s) = 1 + 2(1− s) + s−1/4 − 0.9357796257,

as

g1(s) = G5(s) + 1.3 ·G0(s),

g2(s) = G5(s) + 1.3 ·G0(s),

g3(s) = 0.2 ∗G0(s).
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Figure 1.5: Left: symmetric mode five instability. The eigenvector of E

(1.15) with positive eigenvalue is [0.02,−0.71,−0.02, 0.71]T ; the positive-negative

[a, b,−a,−b] structure corresponds to the symmetric steady state observed, where

the species II density is perturbed with the opposite sign as the species I density.

Right: mode one instability.

The mode one instability is due to the interaction forces defined as

g1(s) = G0(s),

g2(s) = G0(s),

g3(s) = 10−4(Cre
−
√

2s/lr − Cae−
√

2s/la),

where G0 is from (1.22) and g3 Morse with Ca = 1, la = 5, Cr = 4, lr = 0.5.

Coupling effects of the rings on each other can be seen in figure 1.6, which

shows coupling between type I particles (white) with a mode three instability and

type II particles (black) with mode five. The interaction forces are defined in

terms of (1.22) as

g1(s) = G3(s) + 1.1158 ·G0(s),

g2(s) = G5(s) + 1.3 ·G0(s),

g3(s) = −Ks,
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with K = 0, 1, and 4, designed in [86] to exhibit pure mode 3 and 5 instabili-

ties. The sequential disappearance of the instabilities in figure 1.6 corresponds to

the eigenvalues of those modes becoming negative (i.e. eigenvalues from (1.15)),

confirmed numerically.

Even when the concentric ring solution is not linearly well-posed, the stability

or instability of low frequency modes is still borne out in the ground state. Figure

1.7 shows the occurrence of a mode two instability in such a scenario, which

is correctly predicted by the linear stability theory even though the linearized

equation is ill-posed. When multiple modes become unstable, it is possible that

one, several, or all of the unstable modes will appear in the ground state. The

question of those which do, and to what degree, is determined by the particular

nonlinearity of the problem and is outside the scope of the linear theory. For

the single species case, this was pointed out in [86] and the problem of which

modes appear is still open. At this time, even less is known about the two-species

problem. Weakly nonlinear analysis, considered in [79], may prove useful for this

purpose and is one of several considerations for future work.

1.7.3 Linear Ill-posedness

There are several factors which limit the effectiveness of the linear theory when

the stable ground state is far from the concentric ring solution. When R1 = R2,

as is the case in many examples with g1 = g2, the inter-species interaction g3 must

be o(s−1/2) as s→ 0 for the integrals in 1.15 to exist. This condition is not met in

any of the cases of figure 1.1, and so the theory may not be applied. It is possible

to replace g1(s) by g1((1 + ε)s), and if ε is sufficiently small then the observed

steady state is qualitatively indistinguishable from the unperturbed version but

R1 and R2 are no longer equal. The theory does apply to this perturbed problem,

but another difficulty arises: most or all modes are unstable.
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Figure 1.6: Modes three and five stabilize each other as cross-particle attraction

increases. Bottom right: true forces corresponding to g1, g2, and g3 with K = 1.

Changing K scales the coupling force due to g3.
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Figure 1.7: Mode two becomes unstable for the power law potential. Left: g1(s) =

g2(s) = s−0.15, g3(s) = −s0.15. Right: g1(s) = g2(s) = s−0.15, g3(s) = −s0.2.

This type of total instability also occurs in both panels of figure 1.2. While the

instability of all low modes is certainly consistent with the observed steady states,

it is largely uninformative. In the majority of cases when a mode 1 instability

appears, all low frequency modes are unstable as well and the stable steady state is

sometimes asymmetric (with the gradient flow coming to rest at a local minimum).

Nevertheless, the linear stability theory may still provide some insight. In the right

hand panel of figure 1.2, each low mode has one unstable eigenvector except for

mode 3, which has two; however, only one and not a linear combination of both

appears in the steady state. Why one and not the other or a combination of both

appears is impossible to determine by the linear theory, similar to the problem

encountered in [86].

That the theory works very well in the cases of figures 1.4, 1.5, 1.6, and 1.7

but not for figures 1.1 and 1.2 is not surprising– when the stable steady state is

far from the concentric ring solution, the linear theory is less likely to apply.

Two-particle minimizers also occasionally break symmetry (in the sense that

the steady states for the species I and II particles differ by more than a simple
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reflection or rotation), pictured in the first panel of figure 1.2. Particle densities

from figure 1.1 are asymmetric for certain parameters (see the sixth panel) and

may be supported on domains with irregular geometry, including cusps. Some

simulations show dependence on initial conditions, which did not manifest for the

single species problem. Of course, it is not guaranteed that the gradient flow (1.4),

(1.5) reach a global minimizer of the potential (1.3). This minor dependence on

initial conditions seems to indicate that the energy landscape for the two-species

problem is more complex, and that the gradient flow occasionally comes to rest

at local minima.

Simple structures directly relevant to self-assembly, such as alternating particle

rings or chains, may also be observed; see figures 1.4 and 1.8. The self-recognition

and separation into two rings replicates the phenomena observed in [59], and

occurs over a very long time scale (t ≈ 1.4× 105) relative to that of the formation

of the rings (t ≈ 102).

1.8 Conclusion

Two-species particle aggregation systems have a rich solution structure, including

densities with rings, spots, and radial or bilateral N -fold symmetry which often

concentrate on or near co-dimension one surfaces. Considering a continuum limit

as the number of particles tends to infinity results in a PDE system formulation

similar to that of the vortex sheet problem [62, 78]. Linear stability analysis

successfully characterizes the steady states which form, verified numerically in

section 1.7, and linear well-posedness of the PDE system is considered in section

1.6.

Future work could address the three and higher dimensional versions of the

problem, weakly nonlinear analysis of bifurcations from rings to other steady

states, the second-order problem, the n-species problem, and the inverse problem
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Vi(s) = Crie
−
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2s/lri − Caie−
√

2s/lai

Ca1 = 1 Ca2 = 1 Ca3 = 1

la1 = 1 la2 = 1 la3 = 1.03
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lr1 = 1 lr2 = 1 lr3 = 0.005

Figure 1.8: Alternating particle chains arising from the Morse potential, numbers

of particles N1 = N2 = N with N = 8, 20, 80, 200, 400, 800 from top left to bottom

right. The first few panels show that the particles seem to form effective dipoles

because the inter-species repulsion length scale is so small. When the number

of particles increases, the confining nature of the potentials causes them to pack

closer together and chains form, as in panel 5. As N increases further, the particles

begin to form a two-dimensional lattice structure (panel 6).
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of constructing potentials with prescribed instabilities or patterns [86]. In addi-

tion, the two-species system allows for the unique possibility of nontrivial H-stable

ground states which are outside the scope of the co-dimension one analysis here;

c.f. [56].

Figure 1.9 shows a power law example which completely leaves a co-dimension

one manifold, and seems to exhibit an effective phase separation or surface tension

arising from the nonlocal interactions. As the inter-species repulsion singular-

ity becomes weaker than the intra-species repulsion singularity, black and white

particles go from self-segregating to mixing. When the inter-species repulsion

is substantially weaker, exhibited in the far right panel of figure 1.9, a regular

alternating lattice structure emerges in large portions of the steady state. The

formation of lattices in the single species problem is not unfamiliar; see [39] for

similar phenomena in the single-species problem. The first two panels of figure

1.9 correspond to local, not global minimizers of the potential 1.3, and a steady

state consisting of a straight line interface between the black and white particles

has slightly lower energy. The steady states in the right two panels, however,

have lower energy than the separated black/white half disks. The analysis carried

out in this chapter applies to solutions supported along one-dimensional curves,

and as such does not apply to the phenomena in figure 1.9; however, the phase

separation effects could be observed on a co-dimension one surface in R3.
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Figure 1.9: Power laws showing phase separation or surface tension as parameters

vary. Forces are g1(s) = g2(s) = s−1 − 1, and g3(s) = s−1+ε − 1 with ε =

−0.005,−0.0025, 0.005, 0.025 from upper left to bottom right.
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CHAPTER 2

Sparse Representations for Multiscale PDE

2.1 Preface

This chapter discusses a new area of research (see the references in section 2.2)

applying sparse modeling techniques to the numerical solutions of PDE with mul-

tiple, separated length scales [61]. A typical example is

∂uε

∂t
− ∂

∂x

(
a(x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic,

uε(x, 0) = uε0(x), a(x) oscillatory

where ε is near zero. The highly oscillatory coefficient a(x/ε) introduces ε-scale

behavior into the solution.

The reason for introducing sparse models is to take advantage of efficient algo-

rithms available for sparse data structures. The results presented here constitute

advancements in numerical analysis, but a basic background in sparse modeling

and computation with sparse data will help put them in context. This preface

provides that background.

2.1.1 Sparse Representations and Sparse Modeling

A vector x ∈ Rn is said to be sparse if most of its entries are zero. A signal (or

image or general data point) b ∈ Rm is said to admit a sparse representation with

respect to a possibly overcomplete basis (or dictionary) D ∈ Rm×n if

Dx ≈ b.
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This is typically meant in the L2 sense, i.e. ‖Dx− b‖2 is small. A sparse model of

a signal or set of signals is the prior knowledge that the signals admit a sparse rep-

resentation with respect to some known dictionary D, or that some transformation

of the signals is sparse. Cases in which the signals have a sparse representation are

called synthesis models ; those in which a transformation of the signals is sparse

are called analysis models.

Sparse models are useful because they provide a powerful form of prior knowl-

edge (this statement is made precise in Bayesian terms at the end of this section)

which is crucial for ill-posed inverse problems. Sparse models are particularly pow-

erful because they are widely applicable (many types of data, including images

and signals, have sparse representations) and because they can be used to formu-

late the solutions to ill-posed inverse problems involving this data as minimizers

of energy functionals which are computationally tractable.

To illustrate this point, consider the problem of removing noise from a signal

which is assumed to have some unknown sparse representation x with respect to

a known dictionary D. That is, the true signal is equal to Dx for some sparse x.

If the noise is denoted by ε, then we observe b := Dx+ ε and wish to recover Dx.

The sparse model is what makes this possible– without it, the problem is

completely underdetermined. We expect that the noise is not too large, so that

‖ε‖2
2 = ‖Dx− b‖2

2 is small, (2.1)

and also that x is sparse:

‖x‖0 is small, (2.2)

where ‖x‖0, the L
0 ‘norm’, denotes the number of nonzero entries of x. (Note

that it is not a norm.)

We can express our desire to find a representation x satisfying both require-

ments (2.1) and (2.2) by solving an optimization problem of the form

x = argmin x ‖Dx− b‖2
2 s.t. ‖x‖0 ≤ N
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or

x = argmin x ‖x‖0 s.t. ‖Dx− b‖ ≤ δ.

Alternatively, the search for x can be cast as an unconstrained problem

x = argmin x λ ‖x‖0 +
1

2
‖Dx− b‖2

2 (2.3)

where λ which is a parameter. Solving (2.3) uses the L0 term as a regularizer to

promote sparsity of x, and balances this against the reconstruction error Dx− b.

The problem with (2.3) is that the L0 ‘norm’ is totally discontinuous and

so the resulting optimization problem is combinatorial in nature and NP-hard

[64]. There exist efficient greedy algorithms for solving (2.3) with performance

guarantees [84], but these are necessarily approximate in nature. Additionally, it

is not entirely clear that the L0 norm is the best way of measuring sparsity: its

discontinuity, at least, is undesirable.

An alternative to approximately solving (2.3) is to consider its convex relax-

ation

x = argmin x λ ‖x‖1 +
1

2
‖Dx− b‖2

2 . (2.4)

The advantage of this approach, proposed in [21], is that (2.4) can be solved

exactly with efficient convex optimization methods [40]. Another possibility is to

replace the L1 norm by a nonconvex regularizer [19, 20], which often forfeits the

guarantee of finding the global minimizer but performs very well in practice. For

the purposes of this introduction, we will use the L1 norm with the understanding

that alternatives are available.

This approach can be extended to handle deconvolution, upsampling (or su-

perresolution), and other inverse problems by including the appropriate forward

operators into the formulation of (2.4); see the section on TV image reconstruc-

tion below. All that is required is that a reasonable optimization problem can be

posed with balances a sparsity term (‖·‖1, say) with a data fidelity term (usually

‖·‖2
2).
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Typical examples of sparse models are given below:

TV/ROF Image Model [75] This is the only analysis model discussed here.

The prior knowledge is that images (particularly medical images, such as MRI or

X-ray CT scans) are approximately piecewise constant. That is, their gradients are

sparse. An image x can thus be approximately recovered from a noisy observation

y via

x = argmin x λ ‖∇x‖1 +
1

2
‖x− y‖2

2 .

If the image is also affected by an operator A (which could correspond to blur,

downsampling, or more), the optimization problem is

x = argmin x λ ‖∇x‖1 +
1

2
‖Ax− y‖2

2 .

Transform-Domain Models [21] and Sparse Coding [67] These models

assume the data b consists of an image or image patch which has a sparse represen-

tation x with respect to either a wavelet/chirplet/warplet/shearlet/curvelet/etc

dictionary or ‘learned’ dictionary optimized with respect to a given set of signals.

In this case, x represents b in a transform domain defined by the dictionary D.

The optimization problem generated for denoising is exactly (2.4).

Morphological Component Models [77] In many cases, it is desirable to

separate an observed signal z = b1 + b2 into its constituent components b1 and b2.

Examples include the separation of speech from impulse noise and cartoon/texture

image decomposition.

Assuming sparse models b1 ≈ D1x1 and b2 ≈ D2x2, the components can be

separated by solving the optimization problem

x1, x2 = argmin x1,x2 λ1 ‖x1‖1 + λ2 ‖x2‖1 +
1

2
‖D1x1 + D2x2 − z‖2

2 .
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Compressed Sensing [17, 18] This celebrated field combines the previously

described sparse signal models and efficient convex optimization algorithms with

harmonic analysis and random matrix theory to give provable guarantees about

the recovery of transform-domain sparse signals from undersampled measure-

ments. In this case, the transform is required to be orthonormal (such as a number

of wavelet and discrete Fourier transforms).

The setup is as follows: we suppose that f ∈ Rn is a signal with a sparse

representation in an orthonormal basis Ψ, so that Ψx = f with x sparse. We

observe m < n linear functional observations of the form

bi = 〈φi, f〉 = 〈φi,Ψx〉

and wish to recover f . The Nyquist-Shannon sampling theorem guarantees that,

in general, this is not possible; we are attempting to find one of infinitely many

solutions of an underdetermined linear system Af = b. However, the sparse model

Ψx = f provides the additional information necessary to reconstruct f .

In other words, defining A as the matrix with φT1 . . . φTm as its rows, we wish

to find x such that

AΨx = b with x sparse.

Along the lines of the other sparse models in this chapter, we propose f = Ψx

where

x = argmin x λ ‖x‖1 +
1

2
‖AΨx− b‖ .

The point which distinguishes compressed sensing from other sparse modeling

contexts is that, under certain conditions on A, solving the above optimization

problem is guaranteed to succeed. If A has Gaussian iid entries and x has S

nonzero entries, then the number of rows (or measurements) required is just m =

O(S log n) [17].
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Parsimonious Statistical Models [81] and Machine Learning L1 regular-

ization appeared in [81] as a method for enforcing the prior knowledge that most

of the coefficients in a linear regression should be zero.

The standard form of a linear regression is to assume that an output y sampled

in n instances y[i], i = 1 . . . n, depends on inputs x1[i] . . . xp[i] in a form which is

linear in the parameters β1 . . . βp:

y[i] = β1x1[i] + . . .+ βpxp[i] + ε[i] for all i

where the ε[i] ∼ N(0, σ2) are iid zero-mean Gaussian random variables. In matrix

form, the model can be written

y ≈ Xβ

where the jth column of X is xj, j = 1 . . . p. Maximum likelihood estimation for

this problem leads to [43]

β = argmin β
1

2
‖y −Xβ‖ = (XTX)−1(XTy).

However, if n < p the situation is in general hopeless because the data y could be

perfectly explained by infinitely many parameter choices β. Even if n > p, there

is a danger of overfitting: it may be reasonable to expect that many of the βj are

in fact zero because the corresponding variables xj have only a negligible effect

on y, but the maximum likelihood solution will have βj 6= 0 and use these xj to

compensate for some of the error ε.

The prior knowledge that many components of β are zero can be incorporated

by modifying the optimization problem so that

β = argmin β λ ‖β‖1 +
1

2
‖y −Xβ‖ ,

known as LASSO [81]. This use of L1 regularization is ubiquitous in modern

data mining, especially in cases where there are thousands of input variables with

negligible effects. The LASSO eliminates them automatically with the tuning of

a single parameter λ.
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In [91], the authors use the above formulation for face recognition. The xj are

example (cropped and normalized) faces from a database, and y is a face to be

recognized. The coefficients β are then either thresholded or used as inputs to a

support vector machine or other classifier to determine which individual in the

database the face corresponds to.

Outlier Models and Low-Rank + Sparse Decompositions [16] In many

contexts, such as collaborative filtering and topic modeling, it is assumed that a

matrix Y ∈ Rn×m of observations can be approximately factored

Y ≈ UV

where U ∈ Rn×k and V ∈ Rk×m with k much smaller than either m or n.

However, it may be the case that a relatively small number of entries of Y

do not fit the low-rank model. Along the lines of the morphological component

model discussed previously, we can formulate

Y ≈ UV + S

where the majority of entries of S are zero. This leads to the optimization problem

U,V,S = argminU,V,S λ‖S‖1 +
1

2
‖UV + S−Y‖2

2 .

Other regularizers, such as the nuclear norm [72], can be used to limit the rank

of a matrix directly rather than resorting to the factorization Y ≈ UV. The

advantage is that using the nuclear norm leads to a convex optimization problem

rather than the nonconvex one above. The low-rank + sparse decomposition finds

applications in video foreground-background separation and other areas [16].

Aside: Sparsity as a Bayesian Prior

In the above, the term “prior” has been used loosely to describe additional knowl-

edge used to solve ill-posed inverse problems, separate a signal into components,
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and seek meaningful solutions to large linear regression problems. Here, we show

that this usage coincides with the way the term is used in Bayesian statistics.

To illustrate this point, we consider the problem of recovering a sparse vector

x ∈ Rn from noisy measurements b = Ax + ε, where A ∈ Rn×m and ε is a vector

of mean-zero Gaussian noise with variance σ2. We specify a Laplace prior

p(x) = C1 exp{−‖x‖1 /λ}

which is the most common sparsity prior for x, but there are other choices. C1 is

a normalizing constant.

The likelihood is Gaussian:

p(Dx− b |x) = C2 exp

{
− 1

2σ2
‖Dx− b‖2

2

}
,

and so the posterior is given by Bayes’ rule as

p(x|b) ∝ p(b|x)p(x) ∝ C1C2 exp

{
−‖x‖1 /λ−

1

2σ2
‖Dx− b‖2

2

}
.

The posterior attains its maximum at

x∗ = argmin x
σ2

λ
‖x‖1 +

1

2
‖Dx− b‖2

2

which is exactly the optimization problem proposed above. In Bayesian terms,

using this value of x at the mode of the posterior is called maximum a-posteriori

(MAP) estimation. A true Bayesian treatment would avoid using a point estimate

for x at all, preferring the whole posterior distribution instead. When a point

estimate is necessary, the usual Bayesian choice is the mean of the posterior instead

of its maximum. Computing the posterior mean is usually done with Markov

Chain Monte Carlo (MCMC) methods, or variational inference.

2.1.2 Computation with Sparse Data

The application to numerical PDE we are considering does not involve any ill-

posed problems for which sparsity provides the necessary additional information
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Figure 2.1: Sparsity pattern of a typical finite element matrix. Only the black

pixels correspond to nonzero entries. Figure courtesy of Wikipedia [88].

to recover a solution. The PDEs we consider are well-posed, and have unique

solutions.

Instead, the primary role of sparsity in this chapter is to allow for efficient

computation. This is already common practice in numerical analysis and scientific

computing, and it is one of the primary advantages of iterative methods such as

Conjugate Gradient, MINRES, and GMRES [41].

The basic idea is that, when most of the entries in a matrix or vector are

zero, memory and time can be saved by storing only the location and value of the

nonzero entries. For example, matrices arising in finite element methods have the

property that the number of nonzero entries in each row (and column) is bounded

by the maximum number of elements adjacent to any given element, which stays

fixed as the mesh is refined. Figure 2.1 shows such a matrix.

If a sparse matrix A is size N × N , naive multiplication against an ordinary

dense vector requires O(N3) floating point operations. However, because A is

sparse, there exist, say, only k nonzeros per row. By only multiplying the nonzero
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entries of A times a vector, the number of floating point operations can be reduced

to O(kN). Since k stays fixed as N increases, this is a huge complexity gain.

2.1.2.1 Efficient Convolution of Sparse Vectors

This chapter focuses on solving PDEs of the form

∂uε

∂t
− ∂

∂x

(
f(x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic,

uε(x, 0) = uε0(x), f(x/ε) oscillatory

in the Fourier domain. Explicit methods and implicit methods based on Krylov

subspace solvers all require repeatedly applying the elliptic operator

∂

∂x

(
f(x/ε)

∂uε

∂x

)
,

which comes down to convolutions of the form

x ∗ y,

where x and y are sparse, length-N vectors representing f̂ and û discretized.

If x has nx nonzero entries and y has ny, then

(x ∗ y)[i] =
N−1∑
j=0

x[i− j mod N ] · y[j]

can be thought of as the summation of ny scaled shifts of x, so that computing

the convolution is tantamount to adding together ny sparse vectors (it can also

be thought of as a matrix-vector multiplication). We assume that x and y are

stored as lists of (index, value) pairs, the most commonly used format for sparse

vectors. Specifically, we assume there is a queue data structure qx which represents

x. That is, qx has nx entries {qx[k]}nx−1
k=0 , each of which is an (index, value) pair

(qx[k].f irst, qx[k].second) such that x[qx[k].f irst] = qx[k].second. We assume that

the queue allows iteration over its elements, and O(1) insertion at the back, and

O(1) deletion from the front (these are all standard assumptions for queues). For
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example, such a queue could be implemented easily with a linked list. We assume

qy is the analogous queue representing y.

For example, if x is a vector of length 10 with three nonzero entries x[1] = −1,

x[5] = 1, and x[7] = 6, the queue qx would consist of the pairs (1,−1), (5, 1), (7, 6).

We now discuss several possible algorithms for computing the convolution of

two sparse vectors, which is the main bottleneck in our numerical procedure.

Merge Approach If we assume that the queues qx and qy representing x and

y are sorted by increasing index (as in the above example), the problem can be

viewed as one of merging sorted lists into a longer sorted list. When there is a

‘tie’, i.e. two of the vectors to be added have a nonzero in the same index, the

corresponding values are simply added in the result.

Naively merging the sorted lists by searching for the minimum index among

the ny shifts of x would result in an algorithmic complexity of O(n2
ynx). At each

iteration, the front entry of each of the ny shifts would be checked to determine

the minimum, a O(ny) cost. Each iteration adds only one additional coefficient

to the result, so nxny total iterations are required, leading to the overall O(n2
ynx)

complexity. This has the advantage of being independent of the total grid size N ,

but as it turns out this algorithm is far from optimal.

Keeping track of the minimum index during the merge can be accomplished

more efficiently with a heap data structure [89], which is ideally suited for this

purpose. Details of the algorithm revolve around data structures rather than

mathematics, and a more efficient algorithm will be presented next, so pseudocode

for this approach is omitted. The complexity is O(nxny log(ny)), a substantial

improvement over the naive algorithm.
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Index-tracking Approach Ideally, it would be possible to compute the con-

volution (2.1.2.1) with O(nxny) complexity. This is the best possible, because

the sum in (2.1.2.1) consists of nxny terms which each require a floating point

multiplication.

It turns out that this lower bound is achievable, and the key to reaching it is

to notice that the extra log(ny) factor in the complexity of the merge approach is

due to the computational cost of keeping track of the minimum index. However,

this can be avoided in two ways. The first is to use the fact that the vectors to

be added are not arbitrary, but rather shifts of a single vector x. Therefore, the

vectors which will contribute to a nonzero entry in a particular index of the result

can be known ahead of time rather than computed with the heap.

The second approach, which is more general, is to use an auxiliary vector

to store the result with an additional array to keep track of which entries are

nonzero. This way, the indices of the nonzero entries do not need to stay sorted.

Our pseudocode for the algorithm assumes the following notation:

• qx is a queue representing x in (index, value) pairs as described above.

• qy is an analogous queue representing y.

• z is an empty queue of the same form, which will store the result of the

convolution.

• ind_list is an empty queue, which will hold integers in the range 0 : N − 1.

Let ind_list.length denote its length.

• t is an array with entries {t[i]}N−1
i=0 . Recall that arrays offer O(1) entry

lookup, which will be crucial later.

Pseudocode for the sparse convolution - index-tracking algorithm is given be-

low, and accomplishes MAX_ITERATIONS sparse convolutions with shrink.
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Sparse Convolution - Index-tracking Algorithm

initialize t[i] = 0 for all i = 0 : N − 1 . O(N) cost

for counter = 0:MAX_ITERATIONS − 1 do

for j = 0:ny − 1 do

for k = 0:nx − 1 do

if (t[qx[k].f irst+ qy[j].f irst mod N ] = 0) then

append qx[k].f irst+ qy[j].f irst mod N to ind_list . O(1) cost

end if

t[qx[k].f irst + qy[j].f irst mod N ] += qx[k].second× qy[j].second .

O(1) cost

end for

end for

for i = 0: ind_list.length− 1 do

if (|t[ind_list[i]]| ≥ λ) then

append (ind_list[i], shrink(t[ind_list[i]])) to z . O(1) cost

end if

set t[ind_list[i]] = 0 . O(1) cost

end for

end for

return z

53



The nested loops over j and k lead to a total cost of O(nxny), the best one

could hope for. At each step of this loop, at most one entry is added to ind_list,

so the loop over i costs at most O(nxny) as well. Thus the whole cost is

O(nxnyMAX_ITERATIONS) +O(N)

where the only O(N) cost is the initialization in the first line, which is cheap.

This algorithm strengthens the results of the chapter by demonstrating that

efficient computation, independent of the grid size N after the first iteration, is

possible. There are other approaches to multiscale PDE with scale separation (e.g.

[28]) which leverage sparse representations of the solution for efficiency, but so far

none with algorithmic complexity totally independent of the grid size (except for

the initial and final Fast Fourier Transforms).

2.2 Introduction

Partial differential equations with multiple length scales are fundamental to mod-

eling various physical problems including composite materials, wave propagation

in inhomogeneous media, crystalline solids, and flows with high Reynolds number

(fluid mechanics). Typically, these problems involve a wide range of scales, with

each scale corresponding to a level of physical processes. However, in some cases,

the problem is scale separable, in the sense that the mathematical representation

of the dynamics involve one fine scale and one course scale. Even in this case,

accurate numerical methods for solving these PDE can be computationally ex-

pensive since resolving both the coarse and fine scales simultaneously requires a

spatial resolution dominated by the fine scale.

Over the past decades, various approaches have been taken to overcome this

difficulty. In some cases, it is possible to derive an asymptotic approximation for

the effect of small scales on the solution [70]. When this is not possible, many

other techniques have been proposed. A multiscale finite elements method can
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be used to solve linear elliptic homogenization equations (see [47]), and has found

many applications to other multiscale problems. The equation-free methods use

accurate small scale and short time solvers to capture fine scale behavior and

use them to govern the related course scale behavior [49]. The heterogeneous

multiscale method [34] is a general numerical approache which also uses the scale

separation of the problem to generate solvers on the micro and macroscopic levels.

In [66], a projection based approach is used to construct an adaptive multiscale

algorithm for elliptic homogenization equations. And more recently, a sparse

transform method [28] exploits the scale separability of linear homogenization

problems to construct a fast direct solver. The body of literature on multiscale

models is large, and we only mention some of the popular methods. For more

detail on general numerical methods for multiscale problems see [35, 34] and the

citations therein.

In this work, we will focus our attention on linear partial differential equations

with multiscale behavior either in the medium or in a source term. Following the

work of [76], which used an L1 optimization method to compress the Fourier coef-

ficients of the solution, we build efficient solvers for periodic multiscale problems.

In particular, we will use the sparse Fourier structure of solutions to construct

numerical methods which solve the problem directly, without the separating the

micro and macro scales explicitly.

L1 optimization and its related models are at the center of many problems in

the fields of imaging science and data analysis, see for example [17, 16, 31, 15].

Due to the connection with sparse models for compressive sensing, recent works

have introduced L1 techniques for numerical partial differential equations. For

example, in [76] L1 regularized least squares was used to sparsely approximate the

Fourier coefficients in multiscale dynamic PDE (and in this work we expand that

approach). In [65, 68, 69], eigenfunctions with compact support were constructed

to efficiently solve problems in quantum mechanics. Also, in [46] an L1 nonlinear
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least squares model was used to sparsely recover coefficients of a second order

ODE which are related to constructing intrinsic mode functions. In [11], low-

rank libraries are used to sparsely approximate solutions to dynamical systems

and thereby identify bifurcation regimes. Some theoretical results are provided in

[14] for PDE with L1-terms, related to some of these models. For more detailed

analytic results, see [8, 9, 10] which laid the theoretical groundwork for these

equations.

In this chapter, we continue the work of [76] to leverage the sparsity of solutions

in order to design an efficient numerical scheme. However, we also impose sparsity

of the update operator to improve the complexity while retaining a similar level

of accuracy. We show some theoretical results for the sparse spectral scheme and

sparse operator-sparse solution spectral scheme. In particular, we provide error

bounds between the solution and the sparse approximation as well as complexity

bounds on the algorithm. Also, we continue to make connections between L1

based methods and multiscale problems through a denoising interpretation of the

homogenization expansion of the solution.

The outline of this work is as follows. In Section 2.3, we recall the explicit

scheme from [76] and in 2.4 propose an implicit version as well as a sparse operator

approximation. Theoretical results are provided in Section 2.5. A discussion on

well-posedness is given in Section 2.6 and a denoising interpretation of the method

is given in Section 2.7. In Section 2.8, some algorithmic analysis is provided. The

algorithm is tested on numerical examples in Section 2.9, with concluding remarks

given in Section 2.10.

2.2.1 Notation

• a – (or A for anisotropic problems) the medium inhomogeneity. â′ is the

sparse approximation of â.
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• µ – the shrink size variable. µ′ is the corresponding variable for sparse

operator approximation.

• k – the Fourier space variable, with positive and negative frequencies.

• Q – either a general numerical scheme or the matrix corresponding to a

one-step linear numerical scheme.

• L – an elliptic operator. L̂ is the operator when applied in the Fourier

domain and L̂h is its discretization. L̂′h is the sparse approximation.

2.3 Preliminary

We will consider linear multiscale problems where the solutions are sparse in the

Fourier domain [28, 76]. For example, consider the parabolic problem:

∂uε

∂t
− ∂

∂x

(
a(x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic

uε(x, 0) = uε0(x), a(x/ε) oscillatory.
(2.5)

Figure 2.2 shows the solution in physical and Fourier space. This phenomenon is

common in multiscale PDE: distinct length scales manifest strikingly as sparsity

in the frequency domain.

To compute solutions which are truly sparse in the frequency domain (and not

just approximately sparse with many noisy small magnitude coefficients), it was

proposed in [76] to solve an `1-regularized least squares problem to obtain a sparse

approximation of û (the Fourier transform of u). We summarize the method here.

Given numerical iterates ûn, . . . , ûn−q and a numerical update scheme of the

form

ûn+1 = Q(ûn, . . . , ûn−q),
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Figure 2.2: Left: Solution of (2.5) with Fourier-sparse initial data in physical

space. The small rectangle shows the axis limits of the zoomed in plot to the

right. Right: Zoomed in, showing fine scale oscillations. Bottom: solutions in

Fourier space (the y-axis for all Fourier space plots is on a log10 scale). Of the

N = 2048 Fourier coefficients, only 153 have magnitude larger than 10−10.
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the scheme is modified by defining the auxiliary variable v̂ = Q(ûn, . . . , ûn−q) and

solving

ûn+1 = argminw µ ‖w‖1 +
1

2
‖w − v̂‖2

2 , (2.6)

where the `1 norm for complex arguments w is ‖w‖1 =
∑

i |wi|, where | · | denotes

magnitude. Note that the `1 norm is taken in the Fourier domain and not physical

space.

For a one-step linear updating scheme, equation (2.6) can be written as

ûn+1 = argminw µ ‖w‖1 +
1

2
‖w −Qûn‖2

2

where Q is the matrix which advances the discretized solution forward in time. L1

regularized least squares is amenable to a number of efficient solution methods,

e.g. [40]. The problem can also be generalized to any basis or overcomplete

dictionary, but we restrict our attention to Fourier modes. In fact, due to the

orthogonality of the Fourier modes, equation (2.6) decouples and the minimizer

can be given exactly:

ûn+1 = shrink(v̂, µ) := max(|v̂| − µ, 0)
v̂

|v̂|
.

For a concrete example, the forward Euler method applied to ∂uε

∂t
= ∂

∂x

[
a(x/ε)∂u

ε

∂x

]
has the form:

ûn+1 =ûn + dt i k â ∗ (i k ûn)

where k is the wave number and ∗ represents convolution. This becomes:

ûn+1 = shrink ( ûn + dt i k â ∗ (i k ûn), µ )

in the sparse spectral form. By exploiting sparsity in the frequency domain, the

proposed method can rely on sparse data structures to allow for high resolution

with faster numerical simulations.
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2.4 Proposed Methods

In this section, we will discuss two new extensions of the sparse spectral method,

namely an implicit version and a sparse operator/sparse solution version. Each

come with their own advantages, which we will analyze in subsequent sections.

2.4.1 Implicit Variation

For many classes of problems at high spatial resolution, explicit schemes are im-

practical due to the severe time step restriction required for stability. We can

construct an implicit scheme for the problems we are considering, which avoids

these restrictions at the expense solving a more complex L1 problem at each time

step.

Consider the general linear parabolic equation ut + Lu = f with schemes of

the form

Qûn+1 = ûn + dtf̂h.

The simplest implicit version is backward Euler:

(I + dtL̂h)û
n+1 = ûn + dtf̂h,

where L̂ denotes the representation of L in the Fourier basis, L̂h denotes the

discretized version of this operator with respect to a grid size h > 0, and f̂h

denotes the Fourier transform of f sampled at the corresponding grid points.

For a scheme of this form, the analogue of equation (2.6) is

ûn+1 = argminw µ ‖w‖1 +
1

2

∥∥∥Qw − (ûn + dtf̂h)
∥∥∥2

2
(2.7)

which does not have a simple explicit representation. In addition, the optimality

condition for Equation (2.7) requires inverting the matrix QTQ which will often

be badly conditioned.
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When L is a uniformly elliptic operator, the eigenvalues of Q = I + dtL̂h are

positive and so we can instead consider the sparse scheme defined by

ûn+1 = argminw µ ‖w‖1 +
1

2
wTQw − wT (ûn + dtf̂h). (2.8)

Similarly for time-independent problems, i.e. Lu = f , the corresponding

energy is

û = argminw µ ‖w‖1 +
1

2
wT L̂hw − wT f̂h.

Note that when µ = 0, this is the standard variational principle for elliptic oper-

ators. We will see that solving the implicit schemes with the L1 term directly is

often too slow to be practical. The reason is that directly applying this variational

principle to find the solution does not use the fact that the solution is sparse in

order to speed up computations. However, in Section 2.8.1 we will show that it is

possible to construct an efficient algorithm for approximately solving the resulting

optimality condition arising from equation (2.8).

2.4.2 Sparse Operator Approximation

For uniformly elliptic linear operators, for example of the form

Lu = −div(a(x, x/ε)∇u),

the standard spectral discretization

L̂hû = k â ∗ (k û)

requires a convolution at each iteration, which can be costly even when û is sparse.

However, because the diffusion coefficient a is scale separated, we can define a

sparse approximation of L̂h by

L̂′hû = k â′ ∗ (k û)

where â′ is a sparse approximation of â. We can choose â′ to solve

â′ = argminw µ′ ‖w‖1 +
1

2
‖w − â‖2

2
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which again results in a closed form solution given by the soft thresholding â′ =

shrink(â, µ′). An alternative is

â′ = argminw µ′ ‖w‖0 +
1

2
‖w − â‖2

2

where the L0 ‘norm’ ‖·‖0 counts the number of nonzero entries. In this case,

the solution is given by hard thresholding â— setting all coefficients smaller in

magnitude than some threshold equal to zero.

Soft thresholding is contractive and benefits from many desirable smoothing

properties which make it preferable for the sparse approximation of the solution,

which will be discussed below in Section 2.7. For a sparse approximation of the

operator, the benefits of a particular choice of thresholding are less clear and

therefore we consider both.

2.5 Theoretical Remarks

The compressive spectral method, or sparse scheme, inherits many appealing

properties of the underlying numerical method it approximates. In general, it is

at least as stable as the original scheme and retains the order of accuracy.

2.5.1 Contraction and Linear Convergence

The following two theorems show that the explicit and implicit numerical schemes

are contractive. This result is similar to those found in [9].

Theorem 2.5.1. For the explicit scheme generating time steps by

< ûn+1 = shrink((I − dtL̂h)ûn + dtf̂ , µ),

if ||I − dtL̂h||op ≤ 1 then the iterations are contractive: i.e. ||un+1 − un||2 ≤

||un − un−1||2.

Here ‖·‖op denotes the `2 operator norm, or largest singular value.
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Theorem 2.5.2. For the implicit scheme, if L̂h is positive semidefinite, then the

iterations are contractive, ||un+1 − un||2 ≤ ||un − un−1||2, for all dt > 0.

The proofs of these two theorems are similar, and reside in the appendix.

The method is also convergent. In particular, for the correct scaling of µ, we

have the following theorem.

Theorem 2.5.3 (Linear Convergence, Explicit Scheme). Let S denote a linear

spectral numerical update scheme, generating time steps as

ûn+1 = Q(ûn, . . . , ûn−k),

and let Sµ denote the spectrally sparse scheme, which generates time steps as

ûn+1
µ = shrink(Q(ûnµ, . . . , û

n−k
µ ), µ).

Then if S is consistent and stable (and hence converges), and if µ = O(dt1+δ) for

some δ > 0, then the compressive scheme Sµ converges. If µ = O(dtp) with p at

least the order of the local truncation error of S, then the order of convergence of

S is not impacted.

For the implicit scheme, the analogous theorem is the following.

Theorem 2.5.4 (Linear Convergence, Implicit Scheme). Let S denote an implicit

linear spectral numerical update scheme for the PDE ut +Lu = f on a domain Ω

discretized with N grid points, generating time steps as

(I + dtL̂h)û
n+1 = ûn + dtf̂h,

and let Sµ denote the spectrally sparse scheme, which generates time steps accord-

ing to (2.8):

ûn+1 = argminw µ ‖w‖1 +
1

2
wT (I + dtL̂h)w − wT (ûnµ + dtf̂h).
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Then if S is consistent and stable (and hence converges), and if µ = O(dt1+δ) for

some δ > 0, then the spectrally sparse scheme Sµ converges. If µ = O(dtp) with p

at least the order of the local truncation error of S, then the order of convergence

of S in L2 is not altered.

The proofs can be found in the Appendix.

2.5.2 Sparse Operator Approximation: Implicit Solver

We now consider the error incurred by the sparse operator approximation proposed

in Section 2.4.2. The continuum case is discussed in detail, and the proof for the

case of discretized operators is completely analogous.

The usual discretization in Fourier space of a general, anisotropic, divergence

form elliptic operator

Lu = −div(A(x)∇u) + b(x) · ∇u+ c(x)u

results in a matrix (corresponding to convolution) which is dense. However, it is

still approximately sparse when the coefficients A and b are. Approximating A

and b by A′ and b′ which are truly sparse in Fourier space yields an operator which

is far more efficient to store and to work with, but incurs some error. Theorem

2.5.5 quantifies this error.

Theorem 2.5.5. Let u1 and u2 be solutions to

−div(A1∇u1) + b1 · ∇u1 + c1u1 = f (2.9a)

−div(A2∇u2) + b2 · ∇u2 + c2u2 = f. (2.9b)

on a domain Ω ⊂ Rd with periodic boundary conditions and the constraint∫
Ω

u1 =

∫
Ω

u2 = 0.
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Require also that

wTAiw ≥ λ ‖w‖2 ,

ci −
1

2
div(bi) ≥ 0

for i = 1, 2. Then

‖u1 − u2‖H1 ≤ Cλ−2

(
dmax

i,j

∥∥∥(Â1)ij − (Â2)ij

∥∥∥
1

+

C max
i

∥∥∥(b̂1)i − (b̂2)i

∥∥∥
1

+ C2 ‖ĉ1 − ĉ2‖1

)
‖f‖2

where C = C(Ω) is the constant from Poincare’s inequality [38], and the Fourier

series of the matrices and vectors Ai and bi are taken entry-wise.

This form, in terms of
∥∥∥(Â1)ij − (Â2)ij

∥∥∥
1
,
∥∥∥(b̂1)i − (b̂2)i

∥∥∥
1
, and ‖ĉ1 − ĉ2‖1 is

particularly useful because the coefficients will be approximated in Fourier space.

The reader familiar with energy estimates for elliptic equations will see that the

requirements of the theorem are not the most general possible, and the proof

can be modified to handle other cases individually when different estimates are

desired.

Proof. Subtracting the first equation of (2.9) from the second, then adding and

subtracting A1∇u2, b1∇u2, and c1u2 gives

−div(A1∇w)−div[(A1 − A2)∇u2]+b1 ·∇w+(b1−b2)∇u2 +c1w+(c1−c2)u2 = 0,

and after multiplying by w and integrating by parts, we glean

λ

∫
Ω

|∇w|2 dx ≤
∫

Ω

∇wTA1∇w +

(
c1 −

1

2
div(b1)

)
w2 dx

≤ ‖A1 − A2‖op ‖∇u2‖2 ‖∇w‖2 + ‖b1 − b2‖∞ ‖∇u2‖2 ‖w‖2 + . . .

‖c1 − c2‖∞ ‖u2‖2 ‖w‖2 .

Using Poincare’s inequality and ‖A1 − A2‖op ≤ d ‖A1 − A2‖∞,

λ

∫
Ω

|∇w|2 dx ≤
(
d ‖A1 − A2‖∞ + C ‖b1 − b2‖∞ + C2 ‖c1 − c2‖∞

)
‖∇u2‖2 ‖∇w‖2
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and thus

‖∇w‖2 ≤ λ−1
(
d ‖A1 − A2‖∞ + C ‖b1 − b2‖∞ + C2 ‖c1 − c2‖∞

)
‖∇u2‖2 . (2.10)

Similarly multiplying the equation for u2 by u2, integrating by parts, and applying

Poincare’s inequality yields

‖∇u2‖2 ≤ Cλ−1 ‖f‖2 .

Substituting this into (2.10) and using Poincare’s Inequality again, we get

‖u1 − u2‖H1 ≤ Cλ−2
(
d ‖A1 − A2‖∞ + C ‖b1 − b2‖∞ + C2 ‖c1 − c2‖∞

)
‖f‖2 .

The form stated in the theorem follows after

‖A‖∞ = max
i,j
‖Aij‖∞ ≤ max

i,j

∥∥∥Âij∥∥∥
1

and the analogous inequality with b.

In practice memory is not a concern due to the convolutional structure of

the matrix L̂h representing an elliptic operator in Fourier space, but the sparse

structure of the operator dramatically reduces computation complexity (Section

2.8.2).

2.5.3 Sparse Operator Approximation: Explicit Solver

The discrete analogue of Theorem 2.5.5 covers numerical schemes with implicit

time steps, each of which require solving an elliptic problem with a sparsely ap-

proximated operator. Effectively, it allows us to estimate∥∥Q−1 − P−1
∥∥
op

where P is a sparse matrix approximating that of the discretized full elliptic

operator Q, and ‖·‖op refers to the L2 matrix operator norm, or largest singular

value. On the other hand, for explicit schemes, we are concerned about

‖Q− P‖op
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which we will consider directly.

Theorem 2.5.6. Let L be the elliptic operator defined

Lv = −div(a∇v)

and let Q be its Fourier discretization

Qû = k âh ∗ (k û)

where k denotes the vector of Fourier mode frequencies and ah is the discretized

domain inhomogeneity coefficient in the elliptic operator. Analogously, let

Pû = k â′h ∗ (k û).

Then

‖Q− P‖op ≤ K2 ‖âh − â′h‖1

where K is the highest frequency on the grid.

In the case of a square grid [1, . . . , N ]d,K = N/2. The result may be dismaying

at first glance because it appears that the approximation error
∥∥∥âh − b̂h∥∥∥

1
must

be decreased faster than O(1/N2) just to remain stable. However, this type of

bound is natural, since the operators’ norms themselves are

‖P‖op ≈ ‖Q‖op = O(K2).

The large operator norm is normalized by the stability condition dt = O(dx2), so

one can think of these bounds in the update sense as:

‖(I − dtQ)− (I − dtP )‖op ≤ ‖âh − â
′
h‖1 .

Proof. The result is a simple consequence of Young’s inequality: ‖f ∗ g‖2 ≤

67



‖f‖1 ‖g‖2. We have

‖Q− P‖op = sup
||û||=1

‖(Q− P )û‖2

= ‖k(âh − â′h) ∗ (kû)‖2

≤ ‖k(âh − â′h)‖1 ‖kû‖2

≤ K2 ‖âh − â′h‖1 .

The proof clearly generalizes to hyperbolic operators of the formQû = â∗(ik û)

as well.

For an example, recall the forward Euler discretization of a parabolic PDE:

ûn+1 = (I − dtL̂h)ûn,

over a time interval [0, T ]. If ‖âh − â′h‖1 = δ, approximating Q by P incurs an

additional local truncation error of magnitude δK2dt at each time step.

As the grid is refined, the CFL condition requires that K2dt stay approxi-

mately constant, so that the approximation error per step remains approximately

constant.

2.6 The Modified Equation Prespective

Using the variational principle for the explicit scheme applied to the parabolic

equation yields the following first order optimality condition:

0 ∈ ûn+1 − (1− dtL̂h)ûn − dtf̂h + µ∂
∥∥ûn+1

∥∥
1
,

which is equivalent to

0 ∈ û
n+1 − ûn

dt
+ L̂hû

n − f̂h +
µ

dt
∂
∥∥ûn+1

∥∥
1
.
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Taking µ = δdt and formally sending dt and h to zero leads to

ût + L̂û− f̂ ∈ −δ∂ ‖û‖1 , (2.11)

or

ût + L̂û = f̂ − δp(û) (2.12)

where p(û) denotes the particular element of the subdifferential so that the differ-

ential inclusion (2.11) is an equality. The sparse scheme applied to hyperbolic and

elliptic problems yields analogous modified equations. We consider this to be the

modified equation in the sense that the numerical scheme is directly solving this

problem. The subgradient contribution is a vanishing ‘compression’ term which

may be interpreted as a force which pushes the solution u toward the nearest (in

the L1 proximal sense) union of low dimensional subspaces spanned by the Fourier

basis.

Well-posedness for the modified equation is guaranteed via the theory of differ-

ential inclusions on Banach spaces (e.g. [9, 26]). The theorem below summarizes

these results in the current context.

Theorem 2.6.1 (Well-posedness). Let u(t) satisfy the differential inclusion

∂tu(t) ∈ −A(u(t))− δ∂||û(t)||L1

with u(0) in the domain of the monotone (single-valued) operator A. Then for all

δ ≥ 0, there exists a unique solution u(t) defined for all t ≥ 0 which is the solution

to

∂tu(t) = −A(u(t))− δp(û(t))

for some p ∈ ∂||û(t)||L1.

Lastly, we mention that if we want to directly compare the error between the

solutions of the original and modified equations, the error grows linearly in time

(at worst).
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Theorem 2.6.2. Let u be the solution to

ut + Lu = f

and let uδ solve

(ûδ)t + L̂ûδ − f̂ ∈ δ∂ ‖ûδ‖1 .

Then

||u(t, ·)− uδ(t, ·)||2 ≤ 2δt.

The proof is direct and can be found in the Appendix. Similar results are

easily proved for the elliptic and hyperbolic cases using only that ‖p(û)‖∞ ≤ 1

and standard energy estimates; this approach also provides a simple alternate

proof.

2.7 Denoising Perspective

Soft thresholding also appears in early methods for signal denoising using wavelets

[30]. We refer the reader to that work for full details, and list here only the

analogues of its major results in the current context.

Consider the following denoising problem: we wish to recover a signal f ∈

Rn from noisy observations d = f + w, ||w||1 ≤ µ, by soft-thresholding DFT

coefficients by µ. This approach enjoys the following properties:

• (Smoothing) The recovered signal fµ satisfies ||fµ||Hk ≤ ||f ||Hk for any

Sobolev norm ‖·‖Hk . In particular, |f̂µ(k)| ≤ |f̂(k)| for all frequencies k.

• (Near optimality) fµ is near-minimax:

sup
||f ||

Hk
≤C1

sup
||w||1≤µ

||fµ − f ||2l2n ≤ 4 inf
f̃

sup
||f ||

Hk
≤C1

sup
||w||1≤µ

||f̃(d)− f ||2l2n

where f̃(d) is any other estimator of f .
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The smoothing property guarantees that the recovered signal is ‘noise-free’; the

near optimality property guarantees that for worst-case signals of bounded Sobolev

norm and noise of bounded `1 norm, the result recovered by soft thresholding is

nearly the ‘optimal’ (see [30]).

Next, consider the solution uε to the standard parabolic multiscale problem

∂uε

∂t
− ∂

∂x

(
a(x, x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic, uε(x, 0) = uε0(x).

The theory of asymptotic homogenization (e.g. [70]) can be used to show that at

time point tn, the exact solution uε satisfies

uε(x, tn) = u0(x, tn) + εu1(x, x/ε, tn) + ε2R(x, tn)

with |R̂(x, t)| ≤ C. This expansion is valid as long as we assume that the equation

is taken on a periodic domain and a(x) is as smooth as we like. For a numerical

solution, the asymptotic expansion can be easily modified to include truncation

error τn+1 as follows: if we let vn+1 denote the numerical solution at time tn+1,

then

vn+1 = u0(x, tn+1) + εu1(x, x/ε, tn+1) + ε2R(x, tn+1)− τn+1.

This form allows us to draw a connection between the denoising and homoge-

nization problems: for an appropriate threshold choice µ, the compressive spectral

method denoises vn+1 as

vn+1 = u0(x, tn+1) + εu1(x, x/ε, tn+1)︸ ︷︷ ︸
signal

+ ε2R(x, tn+1)− τn+1︸ ︷︷ ︸
noise

and attempts to recover the first terms in the asymptotic expansion. These inter-

pretation is valid between any two time steps, but may not hold globally.

2.8 Efficient Implementation

In this section, we describe important details pertaining to the numerical method

and algorithm considerations. Using a concrete example, we show that a favorable
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complexity can be achieved.

2.8.1 The Proximal-Galerkin Algorithm

The implicit scheme described above requires fast minimization of the energy

(2.8), and differs from many cases where L1 regularization is added because the

problem, e.g. compressed sensing [17], TV minimization [75], or basis pursuit [21],

is ill-posed without it. For the multiscale PDE problem, this is not the case since

an appropriately discretized version of (2.8) will be well-posed and can be solved

by inverting a linear system

Qû = f̂

where Q is a positive-definite (and even sparse, in physical rather than Fourier

space) matrix. If the elliptic operator is discretized appropriately, fast and exten-

sively studied preconditioned conjugate gradient solvers are available. So, to be

competitive, the compressive implicit scheme must leverage sparsity of the solu-

tion û to perform the (approximate) linear inversion Qû = f̂ quickly. For this

purpose, we propose the hybrid proximal gradient descent and Galerkin approxi-

mation algorithm described below, which is related to the procedure described in

[28].

First, let D be the diagonal part of Q. Since Q is the matrix corresponding to

a Fourier-space discretized elliptic operator, D is the matrix corresponding to a

multiple the Fourier-space discretized Laplacian. We take n ∼ 10, µ > 0, ω > 0,

and initialize the solution to be zero (i.e. û = 0).

The Proximal-Galerkin Algorithm
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for j = 1:n do

û = shrink
(
û+ ωD−1(f̂ −Qû), µ

)
;

end for

set I = supp(û);

set û = argminw : supp(w) ⊆ I 1
2

∥∥∥Qw − f̂∥∥∥2

2
;

Return û.

The algorithm begins with a few iterations of the proximal gradient method

applied to the energy

E(w) = µ ‖w′‖1 +
1

2
w′

T
Q′w′ − w′T f̂ ′

where

Q′ = D−1/2QD−1/2,

f̂ ′ = D−1/2f̂ ,

w′ = D1/2w.

This is a simple Jacobi preconditioning of the analogous energy with Q, w, and

f̂ . Rather than iterating proximal gradient to convergence, which would be too

slow, the algorithm stops after just a few iterations with rough approximation.

The support of that solution is used to identify the Fourier modes with largest

magnitude coefficients, and then a Galerkin approximation is computed over those

modes. Due to sparsity in the Fourier domain, the linear solve associated with

the Galerkin part is small and inexpensive– computational complexity depends

on the grid mesh size only through the sparsity of the solution.

2.8.2 Algorithm Complexity

The pseudospectral approach of computing the convolution

k â ∗ (k û)
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uses an FFT, and for an N -gridpoint problem this reduces the computational

complexity per iteration from O(N2) to O(N logN). We now consider the com-

putational complexity of the sparse spectral method, which must be comparable

to O(N logN) to be practical.

Suppose that the sparsely approximated operator is defined Pû = k â′ ∗ (k û),

where the sparsity (number of nonzeros) of â′ is m, and that the sparsity of û is

r. By treating the â′ ∗ û sparse convolution as a summation of sparse vectors, it

can be accomplished with complexity

O(mrmin(log r, logm)), (2.13)

free of any dependence on the full problem size N , by storing the sparse vectors

â′ and û as sorted linked lists and computing the sum as a merge operation, with

a priority queue. For the modest one-time cost of initializing a length N array,

the complexity can be decreased to

O(mr) (2.14)

by leaving the sparse vectors unsorted. We iterate over themr nonzero coefficients

which must be added, and use an auxiliary array keep track of the partial result.

When a new coefficient of the partial result becomes nonzero, it is placed in a

growing list of indices. After we have visited each of the mr coefficients to be

added, we iterate over the list of nonzero indices, perform the shrink operation on

the corresponding auxiliary array entry holding the partial result, and copy the

outcome into a list which holds the final result. Along the way, we ‘zero out’ the

entry of the partial result array, never incurring another O(N) cost.

Finally, if the problem is elliptic or requires implicit time steps and the Proximal-

Galerkin algorithm is used, the complexity includes a term

O(r3),

the cost of the Galerkin linear solve over the support found with proximal gradient.
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Both (2.13) and (2.14) are preferable to the O(N logN) cost of the pseudospec-

tral method for very sparse problems and in the homogenization limit discussed

next in Section 2.8.3. For the numerical examples considered in this limit, m

and r stay approximately constant, leading to computation time which does not

increase as the grid is refined.

One key to the effective application of the sparse spectral method is proper

discretization. For a typical homogenization problem, we are interested in the

solution of an equation such as

−div(a(x/ε)∇u) = f

for ε close to zero, and we might choose the inhomogeneity coefficient

a(x) = 1 +
1

2
sin πx.

This choice is ideally sparse in the Fourier domain, with only three nonzero entires

regardless of N , using the standard uniform grid. If ε = 1/1000, then â still has

only three nonzeros. However, choosing ε = 1
707
√

2
results in â being completely

dense. These two choices of ε differ by less than 10−6, and the first leverages

extreme sparsity in the problem while the second does not. This example shows

that it is prudent to assume a certain relationship between the grid spacing and

ε, considered next.

2.8.3 Homogenization Limit

For homogenization problems in particular, where one is interested in the limit

ε→ 0, we can keep Nε fixed as the grid is refined. Empirically, we have observed

that this keeps the sparsity of the operator and of the solution approximately

constant. For a simple case of this Nε = c (c a constant) limit, the following

theorem guarantees the sparsity of the operator remains fixed along a subsequence.
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Theorem 2.8.1. Let Lε be the elliptic operator defined

Lεv = −div(a(x/ε)∇v),

and let

Qε,Nu = k âN ∗ (k û)

be its Fourier discretization on an N−point discretization of [0, 2π). Then Qε,N

and Qε/2,2N are equally sparse: that is,

#{k : | ˆa2N(k)| ≥ λ} = #{k : |âN(k)| ≥ λ/2} (2.15)

for all λ > 0.

See the appendix for a proof. Note that the theorem assumes the standard

definition of the DFT on N grid points,

FN [a(x)](k) =
N−1∑
j=0

a

(
2πj

N

)
e−2πijk/N ,

which is not unitary. This accounts for the appearance of λ/2 rather than λ on

the right hand side of (2.15). This factor cancels out in the end because with this

definition of the DFT, the `1 norm in Theorems 2.5.5 and 2.5.6 should be scaled

by 1/N .

The complexities (2.13) and (2.14) become very favorable in the Nε = c limit,

where m and r remain nearly constant or grow approximately logarithmically

with N as the grid is refined. In each case we observed, the overall algorithm

complexity is linear or sub-linear in N .

2.9 Numerical Examples

In [76], the authors demonstrated the effective application of the compressive

spectral method to a variety of problems. Here, we expand on those results and

give examples of the additions to the method proposed in this chapter: the implicit

scheme and sparse operator approximation.
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2.9.1 Transport Equation, 1D

The PDE considered is the traveling wave equation:

ut + a(x)ux = 0,

x ∈ [0, 2π] periodic,

u(x, 0) = sin(x)

with oscillatory coefficient

a(x) =
1

8
exp

(
0.6 + 0.2 cosx

1 + 0.7 sin 128x

)
.

The update is given by leap frog time discretization:

ûn+1 = ûn−1 − 2dtâ ∗ (ik ûn).

We choose the above form for a throughout this section, because it is less sparse

than simple trigonometric functions.

The grid sizes considered are N = 210, . . . , 214 and the values of other param-

eters are dt = 6.25×10−6, ‖â− â′‖1 = 10−2, µ = 1.2×10−5, and the simulation is

run to a final time t = 0.5.

Figure 2.3 shows the full spectral and compressive spectral (sparse opera-

tor/sparse solution) solutions on coarse and fine scales. The compressive scheme

correctly captures the largest Fourier coefficients of the solution, discarding all but

3.7%, and the operator approximation discards all but 2.6%. The “true" solution

was computed on a fine grid with finite difference methods.

Figure 2.4 shows the L2 error and sparsity of the compressive spectral approx-

imations as the grid is refined with dt held constant. Error is computed as the

L2 distance to the full spectral solution. The error of the sparse operator/sparse

solution scheme is dominated by the sparse approximation of the solution; spu-

rious modes in the leap frog scheme make a sparse approximation of it difficult.

Over the range of grids considered, sparsity of the operator eventually becomes
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constant while sparsity of the solution grows about linearly. The complexity of

the compressive spectral method is thus linear in N over the grid sizes considered.

Figure 2.5 considers the same problem but with a resonant forcing term

f(x) = esin(x/128)2

with N = 2048 and all other parameters the same as the non-forced problem. The

solution has 11.3% nonzero Fourier coefficients, with ‖ufull − usparse‖2 = 2.5×10−3.

The resonant forcing causes sharp and irregular oscillations at the fine scale, which

make the problem less sparse, but the compressive scheme still captures the correct

behavior.

2.9.2 Elliptic Problem, 1D

The PDE considered is the elliptic problem:

−(a(x)ux)x = sin 2x,

x ∈ [0, 2π] periodic,∫
u dx = 0

with
a(x) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε

)
such that Nε = 8, and usual spectral operator discretization:

L̂hû = k âh ∗ (k û) = f̂ .

This time we consider the homogenization limit, keeping Nε = 8 with ε =

1
64
, 1

128
, ... , 1

1024
, and set ‖â− â′‖1 = 1×10−4. Parameter values for the Proximal-

Galerkin algorithm are n = 10, µ = 5×10−8, and ω = 5×10−3.

Figure 2.6 shows the full spectral and compressive spectral solutions on coarse

and fine scales. Both the sparse solution and operator approximation keep 8.5%
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Figure 2.3: Left: True (blue) and sparse operator/sparse solution (green) solu-

tions in physical space. The two curves lie almost on top of each other. Right:

Zoomed in true (blue) and sparse (green ‘×’) solutions. Bottom: True (blue) and

sparse (red ‘◦’) solutions in Fourier space. N = 4096, operator nonzeros = 107,

solution nonzeros = 153.
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Figure 2.4: Left: Sparse operator/full solution (blue), full operator/sparse so-

lution (green, dashed), and sparse operator/sparse solution (red ×) L2 distance

to the full spectral solution as the grid is refined. The y axis has a log10 scale.

Right: Number of nonzero Fourier coefficients of the operator (blue) and solution

(green, dashed) as the grid is refined. The y axis has a log2 scale.

of the coefficients. Note that the full result and sparse operator/sparse solution

result lie almost on top of each other, even at the resolution of the fine scale.

Figure 2.7 shows error (L2 distance to the full spectral solution) and sparsity

under refinement. “Sparse operator" refers to the solution obtained with the

sparsely approximated operator, using either a high accuracy conjugate gradient

solve or the Proximal-Galerkin algorithm. “Sparse solution" refers to the use of

the Proximal-Galerkin algorithm, with either the full or sparse operator.

Approximation error does not increase while both solution and operator spar-

sity remain approximately constant, leading to computation time approximately

independent of N . With N = 213, the sparse approximation maintains six digits of

accuracy with only 1.1% of the coefficients of both the operator and the solution.

Figure 2.8 illustrates that for a fixed number of nonzero coefficients, the sparse

operator approximation incurs smaller error than the solution approximation.

80



0 1 2 3 4 5 6

0

0.5

1

1.5

x
3.95 4 4.05 4.1 4.15 4.2

0.05

0.1

0.15

0.2

x

−1000 −500 0 500 1000
−10

−8

−6

−4

−2

0

2

4

k

Figure 2.5: Left: True (blue) and sparse operator/sparse solution (green) solu-

tions with resonant forcing term in physical space. Right: Zoomed in true (blue)

and sparse (green ‘×’) solutions. Bottom: True (blue) and sparse (red ‘◦’) solu-

tions in Fourier space. N = 2048, operator nonzeros = 86, solution nonzeros =

231.
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Figure 2.6: Left: True (blue) and sparse operator/sparse solution (green) solu-

tions in physical space. The small rectangle shows the axis limits of the zoomed

in plot to the right. Right: Zoomed in true (blue) and sparse (green ‘×’) so-

lutions. Bottom: True (blue) and sparse (red ‘◦’) solutions in Fourier space.

N = 1024, operator nonzeros = 86, solution nonzeros = 87.
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Figure 2.7: Left: Sparse operator/full solution (blue), full operator/sparse solu-

tion (green, dashed), and sparse operator/sparse solution (red ×) error under the

homogenization limit. The y axis has a log10 scale. Right: Number of nonzero

Fourier coefficients of the operator (blue) and solution (green, dashed) as the grid

is refined.

0 50 100 150 200
−12

−10

−8

−6

−4

−2

0

log
2
(gridpoints)

lo
g

1
0
(r

e
la

ti
v
e

 e
rr

o
r)

Figure 2.8: Pareto curves showing the tradeoff between approximation error and

sparsity of the operator (blue) and solution (green, dashed).
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2.9.3 Parabolic Problem, 1D

The PDE we consider here is the parabolic equation:

ut − (a(x)ux)x = 0,

x ∈ [0, 2π] periodic,

u(x, 0) = 1 + cos(x− π)

with
a(x) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε

)
We again consider the Nε = 8 limit, ε = 1

64
, 1

128
, ... , 1

1024
, and set ‖â− â′‖1 =

1×10−2 and dt = 1×10−2 for all N . Parameter values for the Proximal-Galerkin

algorithm are n = 10, µ ranges from 5×10−6 to 6.4×10−6, and ω = 1×10−2.

Figure 2.9 compares the solutions on coarse and fine scales. The sparse solu-

tion retains 3.2% of the coefficients and the operator is also approximated with

3.2%. Figure 2.10 shows error and sparsity under refinement. Approximation

error decreases while sparsity of both operator and solution stay constant. The

overall complexity is thus constant in N over the range of grid sizes considered.

For this problem, sparse approximation of the operator incurs most of the error.

2.9.4 Elliptic Problem, 2D

We consider the elliptic problem

−div(a(x)∇u) = 10 sinx sin y,

x, y ∈ [0, 2π] periodic,∫
u dxdy = 0

with
a(x, y) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε
+

0.6 + 0.2 cos y

1 + 0.7 sin y/ε

)
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Figure 2.9: Left: True (blue) and sparse operator/sparse solution (green) solu-

tions in physical space. Right: Zoomed in true (blue) and sparse (green ‘×’)

solutions. Bottom: True (blue) and sparse (red ‘◦’) solutions in Fourier space.

N = 2048, operator nonzeros = 64, solution nonzeros = 65.
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Figure 2.10: Left: Approximation error of the sparse operator/full solution (blue),

full operator/sparse solution (green, dashed), and sparse operator/sparse solution

(red ×) error under the homogenization limit. The y axis has a log10 scale. Right:

Number of nonzero Fourier coefficients of the operator (blue) and solution (green,

dashed) are constant as the grid is refined.

on an N × N grid such that Nε = 8, with ε = 1
16
, 1

32
, ... , 1

256
and ‖â− â′‖1 = 1.

Parameter values for the Proximal-Galerkin algorithm are n = 20, µ between

4×10−4 and 32×10−4, and ω = 2×10−2.

Because the full and spectral solutions are very close to each other in phys-

ical space and an overlaid comparison of surfaces is difficult, Figure 2.11 shows

the solutions on a log scale in Fourier space. Of the 220 coefficients in the full

solution, the sparse solution and operator retain just 0.2% while maintaining four

digits of accuracy. Figure 2.12 shows that approximation error decreases slightly

with constant sparsity and computation time. For some grid sizes, the sparse

operator/sparse solution scheme actually attains a lower error than the sparse op-

erator/full solution scheme, evidence of the denoising effect discussed in Section

2.7.

To compare the Fourier coefficients of the full and sparse solutions more ac-
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Figure 2.11: Full (left) and sparse (right) solutions on a log scale in Fourier space.

Note that the great majority of coefficients in the sparse solution are exactly zero.

N = 1024, ε = 1
128
, operator nonzeros = 1972, solution nonzeros = 1874.

curately, the left panel of Figure 2.13 shows the magnitude of the 4500 largest

Fourier coefficients of the true solution sorted in descending order. The magni-

tude of the corresponding sparse solution Fourier coefficients is also shown, with

an upward bias to account for all the wave numbers not present. The right panel

shows the fraction of full solution wave numbers which are captured by the sparse

scheme. The compressive scheme correctly identifies all 500 of the largest modes

in the full solution, and about 68% of the full solution’s largest 1800 modes.

2.10 Conclusion

In this chapter, we have proposed a sparse operator approximation and an effi-

cient method for extending the work of [76] to implicit solvers (Section 2.4). We

have proven the convergence of the original compressive spectral scheme [76] and

the new variants, including a modified equation which shows the effect of soft

thresholding is equivalent to including an L1 subgradient term in the PDE. Also,

we connect the homogenization problem with that of signal denoising via wavelet

thresholding. For PDE with sparse initial data or forcing terms, the new methods
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Figure 2.12: Left: Approximation error of the sparse operator/full solution (blue),

full operator/sparse solution (green, dashed), and sparse operator/sparse solution

(red ×) error under the homogenization limit. The y axis has a log10 scale. Right:

Number of nonzero Fourier coefficients of the operator (blue) and solution (green,

dashed) are constant as the grid is refined.
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Figure 2.13: Left: energy spectrum decay of the full and sparse solutions. The

plot shows just the largest 4500 coefficients of the full solution, the support of

which contains all coefficients of the sparse solution. Right: fraction of sparse

modes appearing among the largest n true modes, as a function of n.
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are asymptotically preferable to the pseudospectral approach. The methodol-

ogy presented here could be translated to other psuedospectral methods which

employ alternative bases. Computationally, this amounts to replacing the Fast

Fourier transforms in the psuedo-codes above with the appropriate transforma-

tion. This could be useful in cases where the solutions are sparse against another

known basis.

2.11 Appendix

Before giving the proofs of the theorems from Section 2.5.1, we recall the definition

of Bregman Distance (also known as Bregman Divergence).

Definition 2.11.1. Let J be a convex function and u, v be points in the domain

of J . Also let p be an element of the subdifferential of J , i.e. p ∈ ∂J(v). We

define the Bregman Distance between u and v as

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉.

In general, the Bregman Distance is not symmetric and does not obey the

triangle inequality, so it is not a distance in the typical sense.

In what follows, we will also use basic facts regarding monotone operators.

Definition 2.11.2. Let A be a multi-valued map from V into itself. We call A

monotone if and only if for any u, v ∈ Dom(A) and any values Au and Av might

take on,

〈u− v, Au− Av〉 ≥ 0.

If A = ∂F is the subdifferential of a convex function, then it is monotone.

We can now give the proof of theorem 2.5.1, in which we omit hats for nota-

tional clarity.
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Proof. Consider the iterations for arbitrary points un and vn:

µp(un+1) +
un+1 − un

dt
= −L̂hun + f

µp(vn+1) +
vn+1 − vn

dt
= −L̂hvn + f.

By taking the difference between these two equations we arrive at

µ(p(un+1)− p(vn+1)) +
1

dt
(un+1 − vn+1)− 1

dt
(un − vn) = −L̂h(un − vn)

and taking the inner product of this equation with un+1 − vn+1 yields

µ
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+

1

dt

〈
un+1 − vn+1, un+1 − vn+1

〉
−

1

dt

〈
un − vn, un+1 − vn+1

〉
=
〈
−L̂h(un − vn), un+1 − vn+1

〉
.

Rearranging terms and taking upper bounds we get the following:

µdt
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+ ||un+1 − vn+1||2

=
〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(un − vn), un+1 − vn+1

〉
=
〈

(I − dtL̂h)(un − vn), un+1 − vn+1
〉

≤ ||(I − dtL̂h)(un − vn)||||un+1 − vn+1||

≤ ||(I − dtL̂h)||op||un − vn||||un+1 − vn+1||.

Note that µdt 〈p(un+1)− p(vn+1), un+1 − vn+1〉 is non-negative by monotonicity of

the subgradient of a convex function. We show this here by using the nonnegativity

of Bregman distance:

0 ≤ Dp
F (un+1, vn+1) +Dp

F (vn+1, un+1)

= F (un+1)− F (vn+1)−
〈
p(vn+1), un+1 − vn+1

〉
+ F (vn+1)− F (un+1)−

〈
p(un+1), vn+1 − un+1

〉
=
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
.

Combining the positivity of the subgradient terms with equation above provides

us with the following bound (assuming ||(I − dtL̂h)||op ≤ 1):

||un+1 − vn+1|| ≤ ||(I − dtL̂h)||op||un − vn|| ≤ ||un − vn||

as desired.
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Proof of theorem 2.5.2.

Proof. Considering the optimality condition for the energy (2.8) defining the im-

plicit scheme, we see that the iterations for un and vn can be written

µp(un+1) +
un+1 − un

dt
= −L̂hun+1 + f

µp(vn+1) +
vn+1 − vn

dt
= −L̂hvn+1 + f.

(If the operator L̂h being considered in (2.8) is not positive semidefinite, then use

(2.7) instead.) By taking the difference between these two equations we arrive at

µ(p(un+1)− p(vn+1)) +
1

dt
(un+1 − vn+1)− 1

dt
(un − vn) = −L̂h(un+1 − vn+1).

Next, taking the inner product of this equation with un+1 − vn+1 yields

µ
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+

1

dt

〈
un+1 − vn+1, un+1 − vn+1

〉
−

1

dt

〈
un − vn, un+1 − vn+1

〉
=
〈
−L̂h(un+1 − vn+1), un+1 − vn+1.

〉
Re-arranging terms and taking upper bounds we get the following:

µdt
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+
∥∥un+1 − vn+1

∥∥2

=
〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(un+1 − vn+1), un+1 − vn+1

〉
.

As in the explicit timestep case, 〈p(un+1)− p(vn+1), un+1 − vn+1〉 ≥ 0 and so

||un+1 − vn+1||2 ≤
〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(un+1 − vn+1), un+1 − vn+1

〉
.

If L̂h is positive semidefinite then we have

||un+1 − vn+1||2 ≤
〈
un − vn, un+1 − vn+1

〉
≤ ||un − vn||||un+1 − vn+1||

and by canceling out terms we get the contractive inequality

||un+1 − vn+1|| ≤ ||un − vn||

as desired.
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Proof of Theorem 2.5.3:

Proof. We assume that S is stable in the following sense:

||ûn+1|| ≤ ||ûn||

for some lp norm; common choices would be the l2 or l∞ norms. Because the

shrink operator decreases the magnitude of each component of a vector, it will

(strictly, because µ > 0) decrease whatever norm is chosen (in fact, the shrink

operator is a contraction in all lp norms). It follows easily that

||ûn+1
µ || ≤ ||Q(ûnµ, . . . , û

n−k
µ )|| ≤ ||ûnµ||

so that the stability of S implies the stability of Sµ. In fact Sµ is more stable than

S.

The key observation for showing consistency of Sµ is that while shrink(·, µ) is

nonlinear, the amount of this nonlinearity is bounded. In particular,

shrink(x, µ) = x+O(µ)

for any x, with |O(µ)| ≤ µ. Applying this observation to the definition of the

sparse scheme and assuming (for the purpose of local truncation analysis) that

both schemes have the same starting points ûnµ = ûn, . . . , ûn−kµ = ûn−k,

ûn+1
µ = shrink(Q(ûnµ, . . . , û

n−k
µ ), µ)

= Q(ûnµ, . . . , û
n−k
µ ) +O(µ)

= Q(ûn, . . . , ûn−k) +O(µ)

= ûn+1 +O(µ).

This shows that locally, S and Sµ differ only by a O(µ) quantity. This quantity

may naively be accounted as part of the local truncation error for the sparse

scheme, in which case

τnµ = τn +O(µ)
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where τn denotes the local truncation error of S and τnµ the local truncation error

of Sµ.

For the consistency of Sµ, we need the local truncation error to be greater

than first order; assuming the consistency of S and that µ = O(dt1+δ) yields this

result. When µ = O(dtp) for some p such that τn = O(dtp) as well, τnµ = O(dtp)

and the order of convergence of the scheme is unchanged.

Proof of Theorem 2.5.4:

Proof. First, recall that the optimality condition for (2.8) is

µp(ûn+1
µ ) + (I + dtL̂h)û

n+1
µ − ûnµ + dtf̂h = 0 (2.16)

where p(ûn+1
µ ) ∈ ∂

∥∥ûn+1
µ

∥∥
1
. For simplicity of notation, let w := (ûn+1

µ − ûn+1).

Assuming (again for the purpose of local truncation analysis) that both schemes

have the same starting point ûnµ = ûn, subtracting the ordinary backward Euler

update from this gives

(I + dtL̂h)w = µp(ûn+1
µ )

which implies ∥∥∥(I + dtL̂h)w
∥∥∥
∞
≤ µ.

Then, using the fact that L̂h is positive definite, we get∥∥∥(I + dtL̂h)w
∥∥∥
∞

‖w‖2 /N
1/2

≥

∥∥∥(I + dtL̂h)w
∥∥∥

2

‖w‖2

≥ 1

which gives

‖w‖L2(Ω) ∼
‖w‖2

N1/2
≤ µ.

So, as with the explicit scheme,

ûn+1
µ = ûn+1 +O(µ) (in L2(Ω))

=⇒ τnµ = τn +O(µ)
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which yields consistency if µ = O(dt1+δ) with δ > 0, and implies the order of

convergence is the same as that of the ordinary spectral scheme if µ = O(dtp)

with p such that τn = O(dtp).

To prove stability of the scheme, return to (2.16) with f = 0 and take the

inner product with ûn+1
µ to get

µ
∥∥ûn+1

µ

∥∥
1

+ (ûn+1
µ )T (I + dtL̂h)û

n+1
µ − (ûn+1

µ )T ûnµ = 0

which leads to∥∥ûn+1
µ

∥∥2

2
≤ 〈ûn+1

µ , ûnµ〉 − µ
∥∥ûn+1

µ

∥∥
1
− dt(ûn+1

µ )T L̂hû
n+1
µ

≤ 〈ûn+1
µ , ûnµ〉

≤
∥∥ûn+1

µ

∥∥
2

∥∥ûnµ∥∥2

and ∥∥ûn+1
µ

∥∥
2
≤
∥∥ûnµ∥∥2

,

as desired.

Proof of theorem 2.6.2:

Proof. We have

d

dt

1

2
||u(t, ·)− uδ(t, ·)||22 = 〈u− uδ, ∂tu− ∂tuδ〉

= 〈u− uδ,−Lu+ f − (−Luδ + f − δ∂||û(t)||1)〉

= −〈u− uδ, Lu− Luδ〉+ δ 〈u− uδ, ∂0||ûδ||1〉

≤ δ 〈u− uδ, ∂0||ûδ||1〉

≤ δ||u− uε||2.

It follows that
d

dt
||u(t, ·)− uε(t, ·)||2 ≤ 2δ

from which the result follows.
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Proof of theorem 2.8.1:

Proof. Let FN [a(x/ε)](k) denote the DFT of a(x/ε) on the grid; that is,

FN [a(x/ε)](k) =
N−1∑
j=0

a

(
2πj

Nε

)
e−2πijk/N .

Then

F2N

[
a

(
x

ε/2

)]
(2k) =

2N−1∑
j=0

a

(
2πj

2N ·ε/2

)
e−2πi 2k

2N
j

=
N−1∑
j=0

a

(
2πj

Nε

)[
e−2πijk/N + e−2πi(j+N)k/N

]
=

N−1∑
j=0

a

(
2πj

Nε

)[
e−2πijk/N + e−2πijk/Ne−2πik

]
= 2FN [a(x/ε)](k),

so that the even coefficients of F2N

[
a
(

x
ε/2

)]
are just those of FN [a(x/ε)]. Also,

F2N

[
a

(
x

ε/2

)]
(2k + 1) =

2N−1∑
j=0

a

(
2πj

2N ·ε/2

)
e−2πi 2k+1

2N
j

=
N−1∑
j=0

a

(
2πj

Nε

)[
e−2πi 2k+1

2N
j + e−2πi 2k+1

2N
(j+N)

]
=

N−1∑
j=0

a

(
2πj

Nε

)
e−2πi 2k+1

2N
j
[
1 + e−2πi 2k+1

2

]
=

N−1∑
j=0

a

(
2πj

Nε

)
e−2πi 2k+1

2N
j
[
1 + e−πi

]
= 0

so that all odd coefficients vanish. These equalities give 2.15.
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